
This paper appeared in Journal of the Learning Sciences, 1993, 4(3): 281-319

Learning in the Right Places

Susan L. Epstein

Hunter College and The Graduate School of The City University of New York

Abstract
A learner’s experience is in large measure determined by the situations it encounters in the

problem space, and, for a challenging task, only a small fraction of that space can ever be visited.

People’s ability to learn to perform well at such tasks is therefore a clear indication that not all

situations are equally relevant to learning. The primary contributions of this paper are the notion

of key nodes, situations particularly important to the development of expertise, the presentation

of empirical evidence for their existence, and the design of a training method intended to

capitalize upon them. The paper also suggests why key nodes might be clustered in the search

space, and describes how a learner might arrive at a key node by chance, be drawn there by a

choice the learner makes, or be driven there by the actions of another agent. This paper offers

empirical evidence of substantial improvement in the quality of performance when a game-

learning program is deliberately directed to clusters of key nodes, and considers several ways to

do so. It also discusses the extension of these results to other domains, and speculates on the

significance of these results for human learners.

1. Introduction
This paper addresses the acquisition of strategic knowledge that supports expert behavior. The

thesis of this work is that expert reasoners can learn to perform difficult tasks well because they

identify relatively few decision-making points as key and then extract crucial knowledge from

them. We hypothesize that the existence of key nodes, as we call these information-rich points,

Learning in the Right Places 2

permits a learner to extract enough knowledge to perform like an expert without experiencing all

possible decision-making situations. Key nodes enable a reasoner to parlay a learning experience

that is small in comparison to all possible situations into a robust expertise that can succeed

under any circumstances. If this premise is correct, then the quality of learned performance

depends in part upon the learner’s ability to locate key nodes. In other words, a good learner

knows not only what and how to learn, but also which situations offer important learning

experiences.

Informally, key nodes offer more of the information required to perform expertly than other

problem situations do. They are also situations where the learner’s decision would have been

uninformed; all the alternatives might have seemed poor, the correct choice might have seemed

among the weakest, or the learner might have had no clear preference. Insufficient knowledge to

make a well-founded decision can motivate a reasoner to learn. The claim here is that the same

situations which trigger this need to learn also act as key nodes, because examination of them

offers knowledge pertinent to expert performance.

Consider, for example, a driver with a formula that directs route selection in an unmapped

town of many one-way streets and dead ends. That driver will be considered an expert once its

formula is better than most people’s (D’Andrade, 1991). The development of that formula,

however, may require steering the car to key nodes, places where the driver discovers

information that improves its formula. A dead end is an example of a key node. The driver tries a

route that includes the dead end and learns that it offers no ready access to most locations in

town. The motivation for visiting the dead end the first time was not to learn about every street in

town (knowledge about the task), but to find an efficient and effective route (knowledge about

how to behave there). A second example of a key node is a traffic circle that offers along its short

circumference a convenient interchange among eight major thoroughfares. Note that key nodes

may (the traffic circle) or may not (the dead end) be places worth revisiting.

The terminology of state spaces clarifies the substantial difference between knowledge about

a task and knowledge about how to perform it. A state is a description of some situation where a

Learning in the Right Places 3

decision must be made, such as a location where a driver may turn left, turn right, or continue

straight ahead. A space is the set of all possible states that can arise in a particular task, such as

all possible locations in a town that require a driving decision. The states in a space are linked

together by the permissible decisions there. In the driving example, a decision at one place will

lead to some subsequent location where a choice is once again required. Thus a location with

three options (left, right, straight) is linked to each of the three subsequent states encountered

when one of those options is chosen. In the driving example, knowledge about the task is

knowledge about the states that exist and how they are linked together, while knowledge about

how to perform the task is knowledge about how to drive from one point to another. In this state-

space representation, problem solving is navigation through a sequence of states in the space, and

expertise is correct and efficient navigation. A set of related problem spaces, like driving through

unmapped towns or playing board games, is called a domain.

Well-guided search of a state-space thus becomes an appropriate metaphor for well-directed

learning. Well-guided search describes a learning experience in which the learner arrives at the

key nodes, the places where knowledge to support behavioral expertise can be acquired. The

central issues in well-guided search concern the balance among learning speed, learning

accuracy, and the development of self-reliance in the learner. In the context of key nodes, these

issues become proof that key nodes exist, methods to reach them, and their role in the learning

process. Does how to encounter key nodes vary with the problem class, for example with the

town in the driving example? Does how to encounter key nodes vary with the problem domain,

for example, with driving as opposed to flying? How does one learn to encounter key nodes

efficiently? To what extent does knowledge about how to perform expertly overlap with

knowledge about how to encounter key nodes? To what extent does the learning method for one

inform the learning method for the other?

The premise that key nodes exist arose during experiments with Hoyle, a program that learns

to play two-person, perfect information, finite-board games. Hoyle begins with general game-

playing knowledge plus the rules for one specific game, and then learns during competition to

Learning in the Right Places 4

play that particular game better. Competition may be against an external contestant (a person or

another program) or Hoyle itself. As Hoyle analyzes its experience and identifies key decision-

making situations, the program extracts game-specific knowledge it can apply in later

competition at the same game. To date Hoyle has learned to play 18 different games as well as

human experts.

This paper details aspects of Hoyle’s behavior for which only the existence of key nodes

provides an explanation. Guidance to key nodes, we show, results from both internal direction

(from the learner’s reasoning principles) and external direction (from the learner’s environment).

The results argue for carefully designed teaching environments that value both instruction and

practice; they also recognize certain aspects of an individual that make learning possible. The

empirical results described here are from the domain of board games, but broader general

applicability is discussed as well. The contributions of this paper are the identification of key

nodes and well-guided search as important concepts, the demonstration of their power, and the

formulation of an initial theory for them.

The next section consists of some simple definitions to establish common terminology.

Subsequent sections explain the role of key nodes in experience, provide background on Hoyle,

and document how a learner can arrive at key nodes through both external and internal direction.

The paper goes on to discuss these results in the broader context of cognitive science and related

work. The final section outlines the beginnings of a theory for well-guided search. Descriptions

and representations for all referenced games appear in the Appendix.

2. Some Fundamental Definitions
Game playing is a good domain in which to study key nodes. Each state can be completely

described by relatively few values. Games are noise free, that is, descriptions are always correct,

without intervening instrumental or human error. It is easy to replicate a situation where a

decision must be made, or even a sequence of such situations. For simple games, and even for

many states in more difficult games, the correct decision is readily computable. Finally, it is easy

Learning in the Right Places 5

to measure different facets of expertise as performance in competition against a variety of

opposition.

Although human experts for games like chess certainly exist, little is known about how

people learn to become experts. Psychologists have studied expert human game players,

particularly chess players, for a century, but it is the nature of their skill, rather than its

acquisition, that has been the primary focus of attention (Binet, 1894; Charness, 1981; Djakow,

Petrowski, & Rudik, 1927; Holding, 1985). When the study of expertise is extended to other

domains, the focus has been primarily on experts’ memories and their organization (Allard,

Graham, & Paarsalu, 1980; Chase & Simon, 1973; Egan & Schwartz, 1979; Eisenstadt &

Kareev, 1975; Engle & Bukstel, 1978; Goldin, 1978; Shneiderman, 1976; Watkins, Schwartz, &

Lane, 1984). Work on the transition from novice to expert has focused primarily on the

reorganization of knowledge as in (Chi, Feltovich, & Glaser, 1981). An exception to this is

recent work on the acquisition of tic-tac-toe (or naughts and crosses) skill by six- to nine-year-

old children, who are shown to acquire strategies such as Win, Fork, and Block with age and,

presumably, with more experience at the game (Crowley & Siegler, 1993).

The importance of well-guided search is supported by the fact that “most of the recent world

champions in chess were at one time tutored by chess masters” (Ericsson & Charness, 1994,

p.739). Indeed, extensive studies across many domains support the hypothesis that deliberate

practice (activities found to improve performance most effectively) is fundamental to the

development of expertise (Ericsson, Krampe, & Tesch-Römer, 1993). This paper addresses the

nature of the situations that deliberate practice exposes.

There is only one program, to the best of our knowledge, that has strong connections with

human game playing and game learning. Hoyle, described further in Section 4, learns to play 18

different games expertly, and uses multiple learning methods to do so. The program employs

commonsense strategies like those Crowley and Siegler have detected in people, and does not

insist that its knowledge be absolutely correct. Also like people, Hoyle’s learning algorithms are

selective enough to control the amount of knowledge it acquires, and it makes use of visual

Learning in the Right Places 6

symmetries. Many of the program’s learning methods are familiar even to a novice human game

player. Hoyle can express the reasons for its move selection in terms people understand. Using

learning time as a measure of difficulty, Hoyle’s performance orders three games identically to

the way seven human subjects’ performance does (Ratterman & Epstein, in preparation). Hoyle

is a discovery program, that is, like a person learning to play, it shapes much of its own learning

experience by its behavior. Hoyle is the program whose empirical data instigated the theory of

key nodes described here.

The following definitions facilitate the discussion of game playing in the remainder of this

paper. Some of the ideas are illustrated in Figure 1.

X

X

O

O

X

X

O

X

X

X

O

X

X

X

…

a

state

a movea

contest
X to move

O to move

a leaf

O to move

…

… …

O to move

X to move

O to move

O

X to move

O

… …

X
O to move

… …

… …

… …

Figure 1. A portion of the tic-tac-toe game tree.

Learning in the Right Places 7

• A game is an activity for two agents, called contestants. Each contestant is assumed here to

have perfect information, access to all the relevant knowledge about the current state of the

world, so that there are no concealed cards, for example. A game is defined by a finite board,

playing pieces, and a set of rules determining play. For example, the rules of tic-tac-toe stipulate

that the grid is initially empty, that the contestants alternate placing an owned playing piece in

any empty position, and that play halts if the grid is filled or if one contestant (the winner)

achieves three owned pieces along a row, column, or diagonal.

• A position is a location on the game board where a playing piece may rest, in accordance with

the rules of the game. For example, there are nine positions on the tic-tac-toe board.

• A state is a configuration of playing pieces on the board along with the identity of the mover,

the contestant whose turn it is to play. A reachable state is one that can actually occur during

competition. For example, an empty grid with X to move is a reachable tic-tac-toe state, but with

O to move it is not. Interesting board games usually have a great many reachable states.

• A move is an action that is permitted by the rules of the game and transforms one state into

another. For example, from the empty grid state with X to move in tic-tac-toe, there are nine

legal moves, each of which results in a different grid with a single X, eight empty positions, and

O to move.

• A game tree organizes the set of all reachable states for a game so that each state points to all

possible next states after a single legal move. For example, in the tic-tac-toe game tree the initial

empty-grid state points to its nine next states. A game tree is the search space (set of possible

problem situations) for a problem-solving program that plays a game. The average number of

states pointed to by any single state in a game tree is called its average branching factor. This is

a metric that reflects the static nature of the game tree, and is unrelated to any particular search

strategy.

• A contest is one complete experience at a game, from some initial state specified by the rules to

some final state where the rules designate a winner or declare a draw. A contest may be

envisioned as a path through a game tree from the initial state to a leaf, a state which points to no

Learning in the Right Places 8

others. The first moves of a contest are called the opening, the last moves the endgame, and the

rest is referred to as the middlegame.

• A tournament is a sequence of contests between two contestants in which they alternate moving

first. One might, for example, play a tournament of 20 contests at the game of tic-tac-toe.

• Perfect play is when, for every state in the game tree, one always moves to secure at least the

best possible outcome despite subsequent error-free play by the opposition. With perfect play

one always wins from a winnable position and draws from a drawable one.

• A draw game is one in which every contest between two perfect contestants must, by the nature

of the game graph, end in a draw. Tic-tac-toe is an example of a draw game.

• A contestant who loses a contest at a draw game has made an error; one who wins or draws is

said to have achieved an expert outcome.

3. Key Nodes
Given a learning program with competence in more than one problem space, key nodes by

definition exist in every problem space where that program learns from experience to perform

better. We begin with a formal definition for key nodes:

For any search space S, the key nodes K for a learner L with foreknowledge F are a minimal

subset of nodes from S such that when L begins with F, learns while it visits K, and then turns

learning off, L performs expertly throughout S.

The remainder of this section first looks more carefully at the role of the foreknowledge F and

the minimality restriction, and then offers evidence of the existence of key nodes and discusses

their relation to learning. Several examples of key nodes in game playing are included.

3.1 The Role of Foreknowledge in Key Nodes

The property of being a key node is a function of the learner’s foreknowledge, that is, what one

knows in advance necessarily delimits what a key node is. Consider first the situation in Figure

2(a). Most people who consider themselves expert at tic-tac-toe believe that O’s prospects look

grim here. Not coincidentally, this is a key node (an element of K) in the game of tic-tac-toe (S)

for Hoyle (L) whose general game-playing foreknowledge (F) is detailed in Section 4. Tic-tac-

Learning in the Right Places 9

toe is so easy that if Hoyle encounters this situation once in play against an external expert, it

will acquire all the additional knowledge beyond F that it needs to play tic-tac-toe perfectly. If

the program does not encounter Figure 2(a) or its symmetric equivalent, and learning is turned

off, Hoyle will never play tic-tac-toe perfectly, because it will always make the wrong move

(into a corner) here.

As another example, consider Figure 2(b), a key node (an element of K) in the game of lose

tic-tac-toe (S) for Hoyle (L) with the same general game-playing foreknowledge (F). Like tic-

tac-toe, lose tic-tac-toe is played on a 3 ∞ 3 grid between X and O. Whoever achieves three

owned playing pieces in a row, however, vertically, horizontally, or diagonally loses. Error-free

lose tic-tac-toe contests are always draws. This game is harder for Hoyle to learn than tic-tac-toe.

Most people who have never played this game before are certain that X has made a serious error

in Figure 2(b). Hoyle, too, will persistently try every possible way to play as X from the other

openings; its foreknowledge incorrectly makes Figure 2(b) unattractive. If Hoyle is playing X the

first time it experiences Figure 2(b), its foreknowledge and whatever it has learned thus far are

likely to be so inadequate that it still loses, despite happening upon the correct opening. The

program’s learning from that failure could further discourage use of the correct opening in the

future. If Hoyle is playing O against an external expert when it encounters Figure 2(b), however,

it will learn the opening and go on to use it in subsequent contests.

3.2 The Minimality of Key Nodes

Because they are a minimal subset of S, key nodes offer an efficient path to important

knowledge. In Figure 2(b), after all possible error-ridden contests with the other openings are

experienced, the program can deduce the knowledge that would have been supplied immediately

X

X

O X

(a) (b)

Figure 2. Key nodes for Hoyle with O to move against an expert as X in the search space

(a) for tic-tac-toe and (b) for lose tic-tac-toe.

Learning in the Right Places 10

by the key node. In the course of this experience, Hoyle would acquire extensive, detailed

knowledge about each of the alternative openings, much of it irrelevant to expertise at lose tic-

tac-toe. Unfortunately, when the other contestant realistically and deliberately varies its play,

happening upon every subsequent way to lose is likely to require hundreds or even thousands of

contests. Even if the other contestant were to deliberately instruct Hoyle by playing in turn each

possible lose tic-tac-toe contest with the wrong opening, learning would require more than a

hundred contests. How or why one loses with the other openings is unimportant to behavioral

expertise in a game that always ends in a draw with error-free play on both sides. The efficient

summary available from Figure 2(b) is “open in the center.”

3.3 Evidence of Key Nodes’ Existence

Tic-tac-toe offers a simple, well-understood example of the contrast between the total number of

situations an expert might theoretically confront and the number of situations a developing

expert experiences during learning. Although initially the combinatorics of tic-tac-toe are a bit

daunting, Table 1 shows that the rules of the game reduce the number of situations that actually

arise during play to about 5478. People do not need to experience all 5478 to develop expertise;

in several games of this size, human subjects often achieve expertise after exposure to at most

7% of the possible situations (Ratterman, et al., in preparation). There are also some basic

symmetries in tic-tac-toe, such as “there is no difference between beginning with the first X in

the upper left corner or in the upper right.” These symmetries reduce the possible situations even

further; for example, 9 possible first moves become 3. Even after reduction for symmetry,

however, the 7% encountered during learning do not encompass all possible situations. Perhaps

experts learn sequences of responses rather than what to do in every possible situation. There are,

after all, only 170 different ways to play an entire tic-tac-toe contest if one recognizes

symmetrically equivalent situations, applies them to narrow the possibilities, and stores

sequences of up to nine moves (calculated from Berlekamp, Conway, & Guy, 1982, pp.670-671).

Few human experts, however, experience all 170 scenarios, let alone remember them.

Learning in the Right Places 11

Key nodes appear in much larger spaces as well. Data indicate striking similarities between

the way ordinary folk cope with the somewhat oversized tic-tac-toe search space and the way

grandmasters at chess cope with an enormous one. The literature on expert chess players

confirms that they neither search nor remember very much of such a space. With an average

branching factor of about 20 and contests that average 80 moves, the chess game graph could

have as many as 2080 ≈10120 nodes. Although there may be as many as 40,000 distinct chess

openings, most tournament players encounter no more than 400 of them in the course of a year of

play, and prepare only three or four for any given tournament (Charness, 1991). If one restricts

the graph to these 40,000 openings, assumes a memorized endgame, and restricts moves to those

that masters might select, there would still be 4 ∞ 1020 reasonable contests with exhaustive

search (Charness, 1983). An expert chess player is estimated to experience 1,200,000 nodes per

year (Charness, 1991). During 20 years of learning, that amounts to only about 6 ∞ 10 -14 of

such a reasonable space, and 2.4 ∞ 10 -113 of the entire space.

The famous chess-playing computers, like HiTech and Deep Thought, experience more

nodes in a minute than any grandmaster does in a year (Anantharaman, Campbell, & Hsu, 1990;

Berliner & Ebeling, 1989). Although the programs outplay most skilled human chess players,

there are still hundreds of grandmasters who consistently outplay the machines. Those people

learned to play that well, better than any high-speed, deep-searching chess program, in only a

tiny fraction of the chess space. This suggests that the chess game tree, like the tic-tac-toe game

tree, does not uniformly distribute the knowledge necessary for people to learn to play well

Table 1: Reducing combinatoric complexity in tic-tac-toe

 RepresentationCount

States based on average branching factor and contest length 94.5 = 19,683

States calculated from combinatoric formulae 6046

States that actually occur during rule-abiding play 5478

Contests that sequence symmetrically-distinct occurring states 170

Learning in the Right Places 12

across all its states, that is, that some of the visited nodes trigger important learning experiences

and that learners regularly encounter those nodes during play.

3.4 Key Nodes and Training

The central theme of this paper is that a learner’s ultimate proficiency depends upon its exposure

to key nodes. Since human learners acquire knowledge that supports expertise from key nodes,

direction to as many key nodes as possible should accelerate and strengthen the development of

expertise. This opportunity occurs during training.

For our purposes, training is the learner’s experience in the search space. In much of

machine learning, a program is given a training set of experiences from which to learn. This set

may be selected at random from a problem space, or it may be deliberately chosen, even

sequenced, by an instructor. One way to evaluate a training experience would be to have an

exhaustive list of key nodes with respect to a program’s input knowledge and the search space,

and then to check them off as they are encountered. This assumes that the space is extremely

well understood by some person who can devise either a description for those key nodes or a

procedure to enumerate them. For any challenging game, however, people cannot enumerate the

key nodes, and the obvious exhaustive algorithm for their identification (“consider every

possible set of nodes”) is exponential in the number of nodes in the search space. A more

pragmatic approach would be to indirectly assess the percentage of key nodes experienced

during learning by testing the program’s playing skill after learning.

A game learning program’s opposition is, to some extent, its instructor, and is called here a

trainer. The trainer has proclivities in its play which effectively shape the game learner’s

experience in the search space. The ideal trainer would be aware of the key nodes appropriate to

a game learning program, its foreknowledge, and the game, that is, could compute the function f

such that K = f(L, F, S). Such a trainer would play so that the learner would encounter every key

node as quickly as possible. Once again, for a challenging game, this approach is intractable.

In any domain, how does a human or machine learner encounter key nodes? Here are some

possibilities:

Learning in the Right Places 13

• Key nodes could arise by chance. Given the apparent relative scarcity of key nodes and the

strength of expertise people develop, this seems unlikely. Among all 5478 possible tic-tac-toe

nodes, only two (Figure 2(a) and its symmetric equivalent) are key nodes for Hoyle.

• Key nodes could be presented by a teacher as a sequence of training examples with

explanations or solutions. A series of puzzle problems like Figure 2(a) for instruction would

require that the teacher have a clear test for key nodes and a road map to reach them.

Unfortunately, neither is available for difficult tasks; the only evidence that one has visited key

nodes is in the improved quality of one’s performance.

• Key nodes could be encountered in a carefully structured environment.

• The learner could seek key nodes out itself.

The last two possibilities, a structured environment and internal direction, have been

explored with Hoyle, a program named for the eighteenth-century chess player Edmond Hoyle

who wrote a book declaring official rules for popular games of the period. It was empirical work

with Hoyle that initially led to a theory about key nodes.

4. Hoyle
Hoyle is a program that learns to play games during competition. Given the rules, Hoyle can play

any two-person, perfect information, finite-board game correctly, and then learn to play it better,

based upon its experience. Hoyle learns to play each game much the way the reader would to

learn to play a strange game. You might not know anything at all about the game, but you do

have a set of skills and expectations that would enable you to play according to the rules, and

guide your efforts to learn to play well. Hoyle is based on a learning and problem-solving

architecture called FORR, predicated upon multiple rationales for decision making (Epstein,

1994a). FORR supports multiple learning strategies (the ability to learn an item of knowledge

more than one way, store alternative values, and formulate recommendations in a uniform

manner based on alternative values), multiple decision strategies (the ability to make

recommendations from more than one viewpoint), and multiple knowledge application (the

Learning in the Right Places 14

ability to use an item of knowledge more than one way). A FORR-based program is expected to

learn both by imitating expert behavior and by trying (and perhaps failing) to solve problems on

its own. This section describes what Hoyle knows before it learns, what it is directed to learn,

how it learns, and how Hoyle’s learning impacts upon its behavior. Further details on Hoyle are

available in (Epstein, 1992).

4.1 What Hoyle Knows before Learning

Hoyle has been carefully designed to facilitate learning about games, and learning about

learning. Like many people, Hoyle comes equipped with a store of knowledge about game

playing in general; it knows, for example, to try to make winning moves and to stop playing

when one contestant has won. Unlike people, Hoyle can begin as a novice at any particular game

as often as we like, and make explicit exactly what it knows and what it learns.

Hoyle simulates an expert game player who in general already knows how to play games

(take turns, follow the rules), the good reasons for selecting a move (the Advisors described in

Section 4.2), what to learn about a new game (the useful knowledge described in Section 4.3),

and how to learn it (the learning algorithms described in Section 4.4). Given the rules of a new

game (like those in the Appendix), Hoyle becomes an expert at the game by playing it. As it

plays, Hoyle acquires specific useful knowledge about the new game, until it gradually makes

better move choices based on that useful knowledge. When Hoyle learns to play a game, it is

easy to distinguish between what the program knows in advance and what it learns, and to isolate

knowledge about one game from knowledge about another.

4.2 How Hoyle Plays

Hoyle learns about a game by playing contests at it. A contest appears to Hoyle as a sequence of

game states (nodes in the game tree) in which the mover makes a decision. A game state is

described to the program as the location of the playing pieces on the board, which side is about

to select a move, and whether Hoyle or its opposition is playing that side. A sample tic-tac-toe

contest might begin with the three game states in Figure 3, where the empty positions are labeled

with numbers.

Learning in the Right Places 15

Hoyle is a limitedly rational program, that is, it implements methods known by its

programmers to be reasonable but not necessarily perfect. The purportedly rational approach to

game playing is to search down through the game tree from the current state to the leaves, and

then reason back up to pick the best move from the current state. In tic-tac-toe it is relatively

easy to calculate the best next move that way; in the enormous game tree for chess, it is usually

impossible. Hoyle’s Advisors are the core of its limited rationality, the commonsense strategies

that help it select a move.

An Advisor is a resource-limited, game-independent, automated procedure that epitomizes a

reasonable basis for selecting a move, like “it captures a piece” or “it wins the contest.” When it

is Hoyle’s turn to move, the program consults its Advisors; they recommend for and advise

against the current choices available. A full list of the Advisors appears in Table 2. The input to

every Advisor is the same: the current game state, the current legal moves, and the current useful

knowledge accrued for the game from experience. An Advisor’s output is one or more

comments, ordered triples naming the Advisor, a legal move, and an integer that indicates an

opinion somewhere between strong aversion (0) and enthusiastic support (10). For example, in

the rightmost state in Figure 3, input to each Advisor would be that state, the seven empty

locations (1, 2, 3, 4, 6, 8, 9) on the grid that constitute legal moves, and whatever useful

knowledge Hoyle has about tic-tac-toe. Comments the Advisors might make in this state include:

(Worried, move to 1, strength 8)

(Greedy, move to 1, strength 9)

(Patsy, move to 3, strength 2).

Hoyle moves X

…

Opposition moves O Hoyle moves X

1 2 3

4 5 6

7 8 9

1 2 3

X4 6

7 8 9

1 2 3

4 6

8 9

X

O

Figure 3. The beginning of a tic-tac-toe contest.

Learning in the Right Places 16

Table 2: Examples of Hoyle’s Advisors

Advisor

Tier

Description
Useful

knowledge
Learning
Strategy

Wiser 1 Makes the correct move if the current state is
remembered as a certain win.

Significant states Deduction

Sadder 1 Resigns if the current state is remembered as a
certain loss.

Significant states Deduction

Victory 1 Makes the winning move from the current state if
there is one.

None —

Don’t Lose 1 Eliminates any move that results in an immediate
loss.

Significant states Deduction

Panic 1 Blocks a winning move the non-mover would
have if it were his turn now.

Significant states Deduction

Shortsight 1 Advises for or against moves based on a two-ply
lookahead.

Significant states Deduction

Enough Rope 1 Avoids blocking a losing move the non-mover
would have if it were his turn now.

None —

Anthropomorph 2 Moves as a winning or drawing non-Hoyle expert
did.

Expert moves Abduction

Candide 2 Formulates and advances naive offensive plans. None —
Challenge 2 Moves to maximize its number of winning lines or

minimize the non-mover’s.
None —

Coverage 2 Maximizes the mover’s markers’ influence on
predrawn game board lines or minimizes the
non-mover’s.

None —

Cyber 2 Moves as a winning or drawing Hoyle did. Important contests Abduction
Greedy 2 Moves to advance more than one winning line. None —
Leery 2 Avoids moves to a state from which a loss

occurred, but where limited search proved no
certain failure.

Play failure and
proof failure

Abduction

Material 2 Moves to increase the number of its pieces or
decrease those of the non-mover.

None —

Freedom 2 Moves to maximize the number of its subsequent
immediate moves or minimize those of the non-
mover.

None —

Not Again 2 Avoids moving as a losing Hoyle did. Important contests Abduction
Open

2 Recommends previously-observed expert
openings.

Opening database
Average contest

length

Induction
Induction

Patsy 2 Recreates visual patterns credited for positive out-
comes in play; avoids those blamed for negative
ones.

Visual patterns Associative
pattern
classifier

Pitchfork 2 Advances offensive forks or destroys defensive
ones.

Forks EBL

Shortcut 2 Bisects the shortest paths between pairs of
markers of the same contestant on predrawn
lines.

None —

Vulnerable 2 Reduces the non-mover’s capture moves on two-
ply lookahead.

None —

Worried 2 Observes and destroys naive offensive plans of
the non-mover.

None —

Learning in the Right Places 17

Note. These procedures are general rationales that reference one or more items of useful

knowledge, each supported by its own learning strategy.The algorithm for each Advisor is

intended to capture the particular perspective it adopts, and the strength of a comment is

determined differently by each one. Victory, for example, is fairly simple; it tests each legal

move to find one that creates a winning state for the current mover. Pitchfork, on the other hand,

is quite elaborate; it constructs a complex, insightful representation of the current state, and then

relates it to a useful knowledge item called forks (Epstein, 1990). Each Advisor is implemented

as a procedure with a time limit. To construct their comments, some Advisors are permitted to

search exhaustively at most two moves ahead, that is, they look at all the possible states that

could occur if Hoyle made every legal move and then the other contestant did the same. From the

last state in Figure 3, for example, without symmetry there would be 7 ◊ 6 = 42 such possible

states. Although Advisors are intended to be generally applicable, some Advisors may never

comment for a particular game or may be irrelevant. For example, Material focuses on piece

capture; it is irrelevant in games like tic-tac-toe where the number of pieces on the board

monotonically increases with every move.

The role of the Advisors is to provide opinions upon which move selection is based. Not all

23 Advisors are equally reliable or equally important, so, as in the schematic of Figure 4, they

are organized into two tiers. The seven Advisors in the first tier have a priority ranking based on

commonsense knowledge, such as “try memory before computation.” They sequentially attempt

to compute a decision based upon correct knowledge, shallow search, and simple inference, such

as Victory’s “make a move that wins the contest immediately.” If no decision is forthcoming,

then all 16 Advisors in the second tier collectively make their many, and often less reliable,

comments based upon their narrow viewpoints, like Material’s “maximize the number of your

playing pieces and minimize the number of your opponent’s.” The move with the most support is

chosen, and ties are broken by random selection.

Learning in the Right Places 18

current

state

acquired useful knowledge
legal

moves
Victory

Panic

Absolute
decision

?

Coverage PatsyShortcutMaterial

Tier 1:

Shallow search

and inference

based on perfect

knowledge

Tier 2:

Heuristic

opinions

yes

no

make
move

…

Blackboard

Voting

Enough Rope

Figure 4. Hoyle makes decisions based upon comments from two tiers of Advisors.

4.3 What Hoyle Learns

What Hoyle learns is useful knowledge, data about a game that is possibly relevant to its future

play and probably correct. A useful knowledge item is a good question to ask about a new game;

its value is an answer to that question. The questions are the same for every game, but their

answers typically differ from one game to another. Thus useful knowledge in Hoyle is game-

dependent data computed and stored in a game-independent manner. There is one learning

procedure for every item of useful knowledge.

Openings are an example of useful knowledge. (Recall that an opening is a sequence of

moves with which two competitors begin a contest.) The Advisor Open recommends moves that

forward previously successful openings, and advises against moves that forward previously

unsuccessful ones. Before the lose tic-tac-toe contest that began with Figure 2(b), Hoyle’s useful

knowledge slot for openings might have been empty. After the contest, one impact of learning

might be that the lose tic-tac-toe useful knowledge slot for openings would now contain a

representation for “open in the center, get a draw.”

Learning in the Right Places 19

Another example of useful knowledge is dangerous states. The Advisor Leery recommends

against, but does not forbid, moves that lead to dangerous states. For a few seconds after a non-

draw contest, Hoyle searches exhaustively from the last unforced move of the loser, looking for a

non-losing alternative. Because the allotted time is severely limited, such a search may prove

inconclusive; if so, the state from which it began is learned as “dangerous.” Before the tic-tac-toe

contest that included Figure 2(a), Hoyle’s useful knowledge slot for dangerous states might have

been empty. Unless Hoyle has enough time after the contest to prove that a corner response is a

certain loss, one impact of learning might be that the tic-tac-toe useful knowledge slot for

dangerous states would now contain a representation for Figure 2(a) with an additional O in

some corner and X as the mover.

Hoyle does not create an explicit representation of any game tree. Instead, Hoyle’s useful

knowledge is a compendium of ways to behave: a set of openings with some history about their

success, a set of dangerous states with warnings to avoid them, and so on. Such information

might be represented in many ways, for example, as explicitly formulated rules or as procedures

with knowledge embedded in them. Because it is a FORR-based program, however, Hoyle

represents this information as a set of game-specific knowledge caches (for example, lists or

hash tables) plus a set of game-independent procedures (the Advisors) that exploit the caches.

Each kind of useful knowledge is represented so that the Advisors that reference it can use it

most efficiently.

4.4 How Hoyle Learns

Hoyle learns useful knowledge both after contests and after tournaments. Each item of useful

knowledge is associated with at least one heuristic, game-independent learning procedure. Each

learning algorithm has its own trigger, a condition whose truth initiates execution. Triggers can

be tested after decisions, after contests, or after tournaments. The trigger for openings, for

example, is Hoyle’s failure to win a contest, and it is tested after every contest. Whenever a

useful knowledge item’s trigger is tested and found true, the learning algorithm for it is executed.

Learning in the Right Places 20

Thus, useful knowledge items are like perpetually recurring questions about experience, and their

associated algorithms are procedures that attempt to construct answers.

The learning strategy varies from one procedure to the next, and may include explanation-

based learning, induction, and deduction. For example, openings are learned by rote, just the way

chess masters learn them. Hoyle simply records every opening, along with whether the

contestant using it won, lost, or drew. The selection of a learning strategy for a particular item of

useful knowledge is purely pragmatic, and often modeled on what we have observed in expert

humans. Deduction amounts to proof in the game tree and is relatively expensive, that is, takes

much time and space. It does, however, provide very strong support to the Advisors in the first

tier, and is well worth some limited expenditure of resources. Induction bootstraps off a limited

sampling and can be quite effective in certain situations. Although its results may be less

trustworthy, they are often good enough. Abduction (“p achieves q and q happened so p must

also have happened”) is a flawed learning strategy that people often apply, with surprisingly

good results. The “probably correct” nature of useful knowledge is directly attributable to the

prevalence of non-deductive learning strategies. The learning algorithms are highly selective

about what they retain, may generalize or abstract, and may choose to discard previously

acquired knowledge.

4.5 How Learning Affects Hoyle’s Behavior

Hoyle plays better when its Advisors have more complete and more correct knowledge to guide

its decision making. Because many of its individual Advisors apply current useful knowledge to

construct their comments, Hoyle learns from its experience to make better decisions from

acquired useful knowledge.

Consider, for example, significant states. These are states in the game tree where, although

the contest is not yet over, perfect play by one contestant will result in a win for that side no

matter how well the other contestant plays. With experience an expert player should learn to

recognize significant states and learn how to exploit them when they offer her side the

advantage. An example of a significant win state (one that must result in a win for the mover) for

Learning in the Right Places 21

tic-tac-toe appears in Figure 5(a) with X to move. An example of a significant loss state (one that

must result in a loss for the mover) appears in Figure 5(b) with O to move. By definition, all the

children of a significant loss state are themselves significant win states for the other contestant,

and at least one of the children of a significant win state is a significant loss state for other

contestant. Once a significant win state is learned, the Advisor Wiser recommends moves to it,

and when Shortsight looks ahead two-ply it opposes choices that will in turn afford a move by

the opposition to a significant win state of its own.

The relationship between key nodes and significant states is non-trivial. Consider, for

example, a state S with a dozen children. After playing one or more contests including each of

S’s children, a learner might first deduce that each of S’s children is a significant win state for

the same contestant, and thereby deduce that S is a significant loss state for the other contestant.

This does not mean that S and all its children are key nodes; perhaps visiting S alone would

dissuade the learner from visiting it again. Thus a significant state is not necessarily a key node.

It may also happen that important learning occurs at a state that is not itself a significant

state. Figure 5(c) is a replica of Figure 2(a), a key node for Hoyle at tic-tac-toe. The program will

always make the wrong choice the first time it encounters this state. After the contest that

includes Figure 5(c) or its symmetric equivalent, Hoyle learns that Figure 5(b) or its symmetric

X

X

O

O X

X

O

X

O X

X

O

(a) (b) (c)

Figure 5. (a) A significant win state from tic-tac-toe, with X to move. This is not a leaf, but with

perfect play X will win. (b) A significant loss state from tic-tac-toe, with O to move. O cannot

prevent a perfect-playing X from a win. (c) A key node for Hoyle from tic-tac-toe, with O to

move. This is not a significant state; with perfect play on both sides a draw will result.

Learning in the Right Places 22

equivalent is a significant loss state for O. Thereafter, with two-ply lookahead, Hoyle will always

refuse to play a corner in Figure 5(c). Clearly, significant states and key nodes are in some sense

intertwined, and lie in each other’s vicinity, but they are by no means equivalent.

5. Experiments with Hoyle: Visiting Key Nodes via External
Direction

Without an explicit road map to key nodes, the most obvious way to expose a learner to them is

to have the opposition play so that the learner must confront them. The data reported in this

section is taken from extensive experiments in which Hoyle was required to learn to play three

quite different draw games with small search spaces. Full details on that work are available in

(Epstein, 1994b); here we cite data to demonstrate how difficult it is to reach key nodes.

In each experiment, Hoyle was expected to learn to play a game in competition against a

hand-crafted, external program, called a trainer. This learning tournament went on until the

program had learned to play well enough to draw 10 consecutive contests. Then learning was

turned off and Hoyle played a twenty-contest testing tournament against each of four

programmed challengers: a perfect contestant and routines that simulated a (slightly imperfect)

expert, a novice, and a random contestant. Although the results were consistent for all three

games, we recount here only those for lose tic-tac-toe, the most difficult of the three for the

program to learn, and therefore the one that made the impact of external direction clearest. (Lose

tic-tac-toe is difficult for Hoyle to learn because perfect play involves a concept it cannot easily

represent -- symmetric movement reflected through the center -- and some fairly elaborate

algorithms for achieving a win as O if the opening move is not the single correct one.)

There are a variety of competitors in this experiment: Hoyle, a perfect contestant, and some

imperfect contestants. The perfect contestant is one that always makes the best possible move. If

there is more than one such move, a perfect contestant chooses one at random to offer a broad

variety of high-quality opposition. (A perfect contestant does not, however, set out to teach

lessons about the nature of the game tree in any organized manner.) A single routine models all

Learning in the Right Places 23

of the imperfect contestants. It accepts an error parameter that determines what percentage of the

time to make a randomly chosen, legal, possibly perfect move, instead of a perfect one. For

testing, we set this error parameter to simulate the expert, novice, and random challengers at

10%, 70%, and 100%, respectively. For training, we created a spectrum of fallible trainers with

error parameters 10%, 20%,…, 100%.

In each of these experiments there is one learner (always Hoyle), one trainer, and the same

four challengers: the perfect contestant and the expert, novice, and random challengers. The

trainer is Hoyle’s opposition during learning; the challengers are Hoyle’s opposition during

testing, after learning is turned off. The trainer varies from one experiment to the next; it may be

the perfect contestant, a fallible trainer, or even Hoyle itself.

Table 3 highlights representative data; each value represents an average over 5 runs. We

define power in this experiment to be the ability to exploit the other contestant’s errors; it is

measured here for a draw game by the percentage of contests won, and is reported against the

expert, novice, and random challengers, in that order. (In a draw game, power against a perfect

contestant must be zero.) We define reliability in this experiment to be the consistent

achievement of an expert outcome; it is measured here for a draw game by the percentage of

contests won or drawn, and is reported first against a perfect contestant, and then against the

other challengers in the same order. In a draw game, ideal reliability is 100%. For lose tic-tac-

toe, maximal power was computed in a 10,000-contest tournament between the perfect

contestant and each of the other challengers. Maximal power is 16% against the expert, 66%

against the novice, and 74% against the random challenger. Space is long-term memory

allocation for useful knowledge; time is the number of contests the learning tournament ran until

Hoyle was able to win or draw 10 consecutive contests.

Learning in the Right Places 24

Note. The last two columns detail the memory and experience requirements for such learning.

The first 13 lines used a termination condition of 10 consecutive wins or draws; the last two lines

used 20.

aMeasured in items of useful knowledge.

bMeasured in contests played.

A perfect contestant is an inadequate trainer because it provides no experience with key

nodes beyond those that two perfect contestants would proffer to each other. The first line of

Table 3 demonstrates that there are key nodes beyond those regularly visited during competition

against a perfect contestant. Even though Hoyle learns to play perfectly reliably (100 as the first

Table 3: A Comparison of the Power and Reliability Achieved after Different Instruction in Lose

Tic-tac-toe

 Learning with Power Reliability Spacea Timeb

1 Perfect contestant 27--65--73 100--88--82--81 89.2 35.6

2 10% fallible 16--70--61 57--91--84--78 135.6 45.6
3 20% fallible 15--54--68 60--96--86--79 224.2 68.8
4 30% fallible 31--59--68 57--78--78--82 137.6 40.6
5 40% fallible 24--65--78 58--89--81--86 325.6 95.2
6 50% fallible 28--61--74 49--71--84--82 306.8 87.6
7 60% fallible 35--61--78 52--72--81--84 273.8 77.0
8 70% fallible 29--69--77 41--63--83--82 301.6 85.6
9 80% fallible 41--72--71 45--68--80--85 154.8 42.8
10 90% fallible 32--60--76 42--72--78--88 209.2 62.0
11 100% fallible 41--64--75 57--66--80--87 185.4 57.8

12 Self-training 14--66--69 39--54--77--78 186.2 71.4
13 Lesson and

practice
17--63--77 95--92--88--90 323.0 122.7

 Longer training
14 Perfect contestant 12--59--80 100--93--80--88 101.0 49.3
15 Lesson and

practice
18--63--85 100--98--97--100 299.0 127.7

Learning in the Right Places 25

entry in column 3) against this trainer, its achievement is fragile: when confronted during testing

with the imperfect moves of the other challengers it has difficulty with situations that arise from

their errors. Although an expert should play better against a weaker contestant, Hoyle is less

reliable against the other challengers than it is against the perfect contestant (88, 82, and 81% in

column 3). Instruction with a perfect contestant shows the learner ideal play, but only in an

extremely narrow context, as evidenced by the relatively small long-term memory (in column 4)

allocated for useful knowledge. For example, a key node like Figure 5(c) may never arise in

competition against a perfect contestant for which equally good moves are equally likely. Quite

reasonably, such constrained experience is also brief; the learning time against the perfect

contestant is significantly shorter than with other trainers.

Noise in the trainer does not lead the learner to more key nodes, that is, key nodes are not

randomly distributed. A series of fallible trainers was tested, each a perfect contestant with a

stochastic opportunity to err. The random move selection rates tested were multiples of 10%

from 10% to 100%, inclusive. Lines 2 through 11 of Table 3 show representative data for the

fallible trainers. Although some fallibility in the trainer provides Hoyle with expanded

experience, too much fallibility makes the trainer so easy to defeat that Hoyle wins or draws 10

contests in a row without learning enough to do well in testing. This is why learning times peak

midway through the last column of Table 3. Along with an increase in learning time and a

randomized component go an increase in the number of nodes the program is likely to encounter,

and an increased demand on long-term memory. If those additional nodes were equally likely to

be key nodes, then the program should have learned to play better with more fallible instruction.

In fact, with a highly fallible trainer Hoyle generally played worse, further evidence that key

nodes are organized some way within the search space, a way that a perfect contestant somehow

reflects. (Another factor in learning against a fallible trainer is imitation. One of Hoyle’s second-

tier Advisors imitates the other contestant as if it were a model of good play. When the other

contestant makes a mistake, Hoyle can eventually unlearn it, that is, learn to prevent its

replication, but that takes time and slows the development of expertise. Because imitation is one

Learning in the Right Places 26

among many factors, a fallible trainer is not an insurmountable obstacle, but it certainly adds to

the learner’s confusion.)

Left on its own, a program is unlikely to encounter key nodes. When the trainer is eliminated,

its lack of guidance to key nodes proves costly. In self-training Hoyle is expected to learn while

playing against itself. Although self-training is often presumed to be a natural environment in

which to improve expertise gradually, the data in line 12 of Table 3 indicate otherwise. With

self-training, Hoyle was the least reliable against every challenger. Although Hoyle had achieved

10 consecutive draws during self-training, the nodes it chose to visit alone did not include

enough of the knowledge learnable at key nodes that would later be required in an encounter

against the challengers. Self-training is not particularly fast but it appears fairly repetitive. While

self-training takes about twice as long as learning against a perfect contestant, it retains far less

useful knowledge than other training that requires about the same number of contests.

A new training paradigm, called lesson and practice training, provides good guidance to key

nodes. Lesson and practice training advocates interleaving relatively few learning contests

against the best available expert (the lesson) with relatively many self-training contests (the

practice). The application cited here gave Hoyle experience in cycles of 2 lessons followed by 7

practice contests. Lesson and practice training in line 13 of Table 3 shows some improvement

over training against a perfect contestant in line 1; its increased reliability against the weaker

challengers indicates a less fragile expert. Performance against the stronger challengers in line

13, however, is less satisfactory.

The problem, we suspected, was that training against a perfect contestant offers repeated

opportunities to observe wisdom in action, while this particular version of lesson and practice

training offers a lesson only 2/9 of the time. To determine if longer training would solve this

problem by offering more exposure to high quality play, we reran lesson and practice training

with a termination condition of 20 consecutive wins or draws instead of 10, and found an even

more dramatic improvement, shown in line 15. Of course, this necessitated a suite of additional

experiments to offer this potential advantage to the other trainers as well, and to test whether 50,

Learning in the Right Places 27

or 75, or even 100 consecutive wins or draws was a better termination condition than 20. In most

cases performance did not simply improve, or continue to improve, that is, there was no

statistically significant improvement with later termination, or only a single instance of slightly

improved performance that never approached line 1. The single exception, as reflected in line 15,

was lesson and practice training with termination condition 20. (Line 14 is provided only for

comparison.)

Lesson and practice training proved more reliable and powerful against all the challengers

than most other kinds of instruction; it was never less reliable or less powerful at the 95%

confidence level. Our explanation for this improved performance is that Hoyle was able to derive

useful knowledge because it was forced by lesson and practice training to visit more key nodes

during learning. Increasing the termination condition to 20 gives Hoyle (on average) one

additional lesson, enough to help it simulate a robust expert.

Lesson and practice training is really an experiential style. It prescribes relatively few lessons

(experience with an expert) followed by relatively extensive practice (exploration on one’s own).

This treats the lesson giver (in this case the perfect contestant) as a scarce resource, an attitude

appropriate in many real-world situations. It also drives the learner’s experience to places in the

search space it would not experience during lessons. During practice, the learner will attempt to

apply what it knows to a variety of related problems. As long as the learner’s knowledge does

not support perfect play, it is likely to make mistakes, particularly during practice, mistakes that

take it to key nodes where it can learn to play better. We believe that practice works because the

learner has good reasons (Hoyle’s Advisors) and fairly reliable information (useful knowledge)

on which to base its (perhaps misguided) decisions, and because it can learn from its mistakes, so

that its experience refines its knowledge. Support for this theory appears in the next section.

6. Experiments with Hoyle: Visiting Key Nodes via Internal
Direction

Learning in the Right Places 28

Hoyle is currently learning nine men’s morris, an ancient African game played with 18 pieces on

a 24-position board. Although it is a draw game, most people find the search space of

7,673,759,269 nodes quite challenging (Gasser, In press). Hoyle’s contests against an external

expert program average 60 moves in two stages: a placing stage with an average branching

factor of 15.5, and a sliding stage with an average branching factor of 7.5. Only in a game this

difficult has the impact of internal direction on Hoyle become evident.

Originally, Hoyle was not very good at nine men’s morris; it lost every contest against its

trainer, a hand-crafted, very strong, expert program. Recently, however, two new Advisors were

added that capitalize on the visual cues provided by predrawn lines on the game board (Epstein,

Gelfand, & Lesniak, In press). With these Advisors, the program initially had some ability to

draw, and then began to learn to win. Table 4 shows the outcome of a 50-contest tournament

with both the new Advisors in place. During the 50 contests in Table 4, Hoyle lost 24 times,

drew 17 times, and won nine times. (Since nine men’s morris is a draw game, the wins mean that

the hand-crafted program made errors. We have located and are in the process of correcting some

of them. There is, however, no program that plays this game perfectly. The proof that the game is

a draw consists of a single, computer-generated path through the game tree that relies on a 2-

gigabyte database generated by full retrograde analysis (Gasser, In press).)

Table 4: The Outcome of a 50-Contest Tournament at Nine Men’s Morris between Hoyle and a

Hand-crafted Expert Program
Outcome # Outcome # Outcome # Outcome # Outcome
1 draw 11 loss 21 loss 31 loss 41 draw
2 loss 12 loss 22 draw 32 loss 42 draw
3 draw 13 loss 23 loss 33 win 43 win
4 loss 14 draw 24 draw 34 draw 44 draw
5 loss 15 loss 25 loss 35 win 45 win
6 draw 16 draw 26 loss 36 loss 46 win
7 loss 17 draw 27 win 37 loss 47 win
8 draw 18 draw 28 loss 38 loss 48 win
9 loss 19 loss 29 loss 39 win 49 loss

10 draw 20 loss 30 draw 40 loss 50 draw

Note. “win” indicates that Hoyle defeated the trainer; “loss” indicates that Hoyle lost to the

trainer.

Learning in the Right Places 29

 The first win was not until the 27th contest, and five of the wins were in the last eight

contests, suggesting that Hoyle was learning to play better as it acquired more experience. (The

likelihood that when 10 wins are distributed at random among 50 contests, none would appear

before the 27th contest is .02%, and that five would appear in the last eight is 0.4%.) Comparison

against what we believe to be a perfect contestant for the placing stage indicates that the program

made no identifiable errors in the placing stage of any of the last 10 contests.

There are several possible explanations for this clear improvement:

• New application of useful knowledge: One possibility is that the new Advisors were associated

with a new category of useful knowledge, but these two do not reference any useful knowledge

at all, and so could not benefit from learning.

• Unusually accurate new Advisors: Another possibility is that the new Advisors were so clever

that they quickly dominated the decision making process. This is not the case either; Hoyle

gathers statistics on the performance of its Advisors and, although the new ones were active, they

by no means overwhelmed the others. Although there were now some early draws, the ability to

win was not immediate, as it should have been if these Advisors “knew” the right moves from

the start; the program’s improvement was clearly gradual.

• Direction without learning: Yet another possibility is that learning was already drawing the

program to places where all Hoyle needed was some good advice from these new Advisors to

play well. If that were so, then the useful knowledge store should be roughly the same size

without the new Advisors as with them. This is not the case; the useful knowledge store

increased with the new Advisors.

• Visiting the key nodes: The final possible explanation, and the one advocated here, is that the

program performed better because of the new nodes it chose to visit during learning. With

different useful knowledge as input, the same Advisors in the same states are likely to make

different comments, and based upon those different comments Hoyle is likely to select a

different move. The new Advisors drew Hoyle to places in the search space where its learning

algorithms extracted additional, more powerful, useful knowledge upon which the other

Learning in the Right Places 30

Advisors were able to capitalize. Hoyle definitely plays smarter with these new Advisors, smart

play directs it to the key nodes, and Hoyle learns enough there to make even better decisions than

it did without the new Advisors, or with the new Advisors but without learning.

7. Discussion
The results described here support hypotheses about the nature of a learner’s task and teaching

toward it, and offer a perspective on learning programs.

7.1 Exploiting Key Nodes: The Learner’s Task

This paper addresses the ability of a human learner to bootstrap from limited experience in a very

large problem space to robust expertise throughout it. Section 5 offers evidence that some

problem instances (key nodes) can provide important developmental experience, and that these

instances are not randomly distributed in the search space. Section 6 offers evidence that

knowing how to find those key nodes is extremely important.

Indeed, a sudden, rather than a gradual, improvement in performance during learning may be

explainable as the crystallization of developing internal direction, as if the learner has finalized

some good decision-making technique. The impact of new Advisors on Hoyle’s ability to learn

nine men’s morris supports this hypothesis. Current research is successfully exploring ways to

have the program learn new Advisors on its own that appear at this writing to have a similarly

beneficial effect (Epstein, et al., In press). Another example of sudden improvement appears in

TD-gammon, the neural net program that learns to play backgammon as well as the best human

experts (Tesauro, 1992). Work on TD-gammon supports the principles of well-guided search.

The program originally learned in about a month, playing 200,000 contests against itself.

Contests averaged 60 moves, so that the program encountered no more than 2◊ 108 nodes, a tiny

fraction of its search space. During the first week, however, the program played “long, looping

contests that seemed to go nowhere” (Tesauro, 1991, personal communication). Then the

program improved rapidly, suggesting that first the network learned to find key nodes, and then

to make good decisions. A less accomplished precursor, Neurogammon, had a trainer, but

repeatedly experienced the same 400 contests, without any ability to encounter additional key

Learning in the Right Places 31

nodes. When TD-gammon learned against Neurogammon instead of against itself, it was able to

progress away from random moves much more quickly (Tesauro, 1991).

The ability of people like grandmasters to function at a high level when they have only

experienced a tiny fraction of a search space suggests, as noted in Section 3, that key nodes are

not evenly distributed. A person studying chess will often deliberately explore multiple

alternatives from a state that arose during play, and find that such search clarifies some difficulty

by driving the examination back to the problem’s origin in earlier play or by driving it forward to

some resolution. If one envisions those small searches as paths in a restricted neighborhood or

cluster, we hypothesize that such clusters are particularly rich in key nodes, and that human

game learners deliberately traverse them because such clusters offer a particularly effective

learning experience. The evidence we offer for this theory is Hoyle’s improved performance at

the same games under lesson and practice training. Lesson and practice training is driven by

Hoyle’s Advisors and its game-specific useful knowledge. In the laboratory we have regularly

observed Hoyle using practice contests to explore in the vicinity of nodes it had experienced

during lessons. Hoyle’s Advisors rely upon useful knowledge while they encourage cluster

exploration by devices like the repetition of learned openings (Open) and the imitation of expert

(Anthropomorph) and successful (Cyber) play.

7.2 Well-Guided Search: The Teacher’s Task

There are clear lessons in this work for those who teach learners like Hoyle and, to the extent

that Hoyle is human-like, for those who teach people. In a difficult problem space, there is far

too much to remember by rote, and not all experience is equally worth retaining. Given that

random experience is unlikely to take the learner to enough key nodes in an otherwise intractable

problem space, the role of a teacher is to provide guidance there, and this supervision is non-

trivial.

• A lack of instructional breadth, like training with a perfect contestant, may overlook nodes that

the nascent expert should visit for robustness. A correct model of behavior is insufficient because

it is too rigid in its paths through the search space.

Learning in the Right Places 32

• A lack of instructional reliability, like training with fallible contestants, may fragment

experience and distract the learner from causal associations. In game playing, for example, the

problem state representation is always complete, in the sense that no information is excluded,

that is, the identity of the mover and location of every playing piece is specified. Thus the

randomness introduced by a fallible trainer can vary any aspect of the learning situation, whether

or not it is relevant to the problem of learning to play well. Whether or not the learner can

manage to extract some useful knowledge from such random variation depends in part upon the

distribution of key nodes in the search space. If key nodes are relatively sparse in the space, the

randomness of a fallible trainer is unlikely to drive the learner to a key node.

• Left to its own devices, a learner is unlikely to encounter key nodes either. Self-training is

likely to combine a lack of expertise with a lack of inherent variation. Instead, the learner needs

both to be led and to explore the problem space alone, preferably by perturbing its behavior

based upon knowledge. High quality instruction requires variation that addresses the vicinity of

the key nodes; that is what lesson and practice training appears to do. The lessons direct the

learner to the nodes an expert would be likely to visit, while the practice permits the learner to

explore variations on that guidance. (Although lesson and practice training was modeled on skill

development in chess players, the author recognizes its similarities to classroom instruction and

homework.) Unlike fallible training, the non-random variation of lesson and practice training,

motivated in Hoyle by Advisors and useful knowledge, apparently leads to key nodes and to

more successful learning.

7.3 Making it Work: The Programmer’s Task

There are also more general lessons here for the development of expert programs that learn. An

evaluation function in a learning program should be constructed not only to make good decisions

but also to route exploration to guide learning. The typical, competitively successful game-

playing program has incorporated only some of the work from cognitive science: an extensive

opening book (early move sequences favored by human experts) and a store of endgame

knowledge that describes the best way to finish a contest. It is in the middlegame where such a

Learning in the Right Places 33

program makes most of its mistakes, when it selects a move with a heuristic approximation of

exhaustive search. The program relies upon a prespecified, game-dependent set of features,

properties of a state like “king in check” or “control of the center.” The program’s evaluation

function is a game-dependent metric for the goodness of a state, computed as some combination

of the values of the feature set at that state. Middlegame decisions are dependent on the accuracy

of a feature-based evaluation function and, to some extent, on the search depth. This paper shows

that, unless those features direct the program’s attention to key nodes and unless the program can

learn there, middlegame play will be both inefficient and inaccurate.

A careful distinction between the expert’s successful behavior and the learner’s is

constructive. For most challenging games, one must presume an imperfect trainer. If a program

takes an imperfect trainer as a model of expert behavior, however, it will eventually learn

something that is incorrect. One reason lesson and practice training succeeds is probably that

Hoyle distinguishes carefully between its own moves and those of its trainer. A trainer’s move is

more highly regarded, and trainer error is less likely to be suspected. Thus nodes are in some

sense labeled by the reason that they were visited, and treated accordingly. If the trainer makes

errors unidentified as such, the program may choose to imitate them (with the Advisor

Anthropomorph) and thereby slow (but not disable) its own development of expertise. The

learning program is expected to make errors, and tolerates them well, but is expected to make

fewer as it has more experience.

A theory of well-guided search is applicable to domains beyond game playing. Recent work

in cognitive science indicates that studies of chess experts are representative of expertise in other

fields as well. Regardless of the domain, experts are distinguished from novices in several ways:

they rely heavily on mental models and special-purpose knowledge representations, they have

larger long-term memories and expert procedural techniques, and they have extensive, readily

accessible knowledge (Chase, et al., 1973; Ericsson & Smith, 1991; Ericsson & Staszewski,

1989). Their search, however, is distinguished by its limited focus, not its breadth or speed

(Charness, 1991). This information suggests that key nodes are present in other domains as well.

Learning in the Right Places 34

Like these experts, Hoyle has special-purpose knowledge representations (half a dozen ways to

represent the board, for example), large long-term memory (dynamically allocated caches of thus

far unlimited size), and expert procedural techniques (the Advisors). To date, however, Hoyle’s

search is more severely restricted and less focused, and its memory organization less conducive

to fast retrieval than human experts’.

Finally, the work described here highlights the dangers inherent in learning with a reactive

program, a goal-free program that simply senses its environment and responds to it (Brooks,

1991). A reactive program is in some sense the victim of its environment; it is expected only to

experience, generalize and correct, and keep reacting. It has no control over the nature of its next

experience, and can take no initiative. Since the environment is its trainer, a reactive learning

program can only succeed to the extent that its environment shapes its experience appropriately.

Thus a reactive learner must rely on its environment to deliver it to key nodes in far greater

proportion than they appear in its search space.

7.4 Additional Issues

There are many interesting issues associated with the theory of well-guided search as proposed

here. The identification of key nodes is non-trivial; although Hoyle has some successful, domain-

dependent detectors, “important” or “interesting” remains an elusive property. The distribution

of key nodes, in particular their tendency to cluster, may vary with the domain. Perhaps

combinations of key nodes, rather than individual ones, are what drives learning. (Indeed, we

have observed in our laboratory individual runs where fortuitously-encountered sequences of key

nodes in early training produced exceptionally rapid learning.) Different learning strategies may

demand different key nodes. Explicit labeling of key nodes may even suggest a new class of

learning strategies that rely upon their significance as exemplars or counterexamples, or require

clusters of key nodes as input. All of these are topics for future work.

A program needs to learn knowledge that will correct its expectations about each state the

next time. Rather than begin each contest from the initial state, a game-learning program could

begin a practice session from such a key node. This would still not be exhaustive search, but a

Learning in the Right Places 35

series of carefully organized “what if’s” that addressed problematic positions. A surprised

learner could, quite appropriately, query its trainer or begin a line of inquiry along with or in

competition against its trainer. A game-learning program might deliberately construct a state (or

a set of states) from which to begin a practice session. For example, if a program encounters a

new opening and loses to it, why should it have to wait until it encounters that opening again to

seek an appropriate defense? The program could instead undertake a deliberate investigation of

the opening, alternately playing each side, preferably against the same expert who introduced it.

Here the key node (or key nodes) may expose important strategic strengths or weaknesses.

Hoyle already saves contests that it considers significant because they violate its

expectations. Key nodes arise in the context of good teaching cases. Thus a natural extension of a

skilled learner to a skilled teacher would be to focus on these paradigmatic experiences. Where

the program has learned, so may its students, particularly if the instructor and the students have

similar learning algorithms.

8. Related Work
8.1 Computers and Game Learning

Often, the computer simulation of expertise is simply a representation by the programmer of a

formula like the one to direct the driver, that is, the program is created as an expert with

knowledge about the entire space. To impart that expertise, the programmer must first calculate it

or extract it from a human expert. Most expert game-playing programs are like this. The best of

them usually achieve their prowess with an opening book, a search engine that drives the

program to explore and estimate the winning potential of millions of possible future situations

per second, and, in some cases, a store of endgame knowledge (Anantharaman, et al., 1990;

Berliner, et al., 1989; DeJong & Schultz, 1988; Schaeffer, et al., 1992; Schultz & De Jong,

1988).

For complex problem areas like a large unmapped country or a difficult game, however,

exhaustive representation of knowledge about a space may be infeasible: people may not have

the knowledge, or it would require too much time and computer memory to calculate and store it.

Learning in the Right Places 36

A more realistic approach is to design a program that learns to become an expert, like a driving

program whose route selection formula evolves with its experience. Among the few game-

playing programs that learn to play expertly, most are limited to a single game and a single

learning method. The outstanding success among them is TD-gammon which learns weights for

a neural network to select the best next move(Tesauro, 1992). This technique has met with

disappointing results in other games, however (Boyan, 1992). Most game-learning programs also

use a single learning method. Although a person might learn openings by rote and learn the value

of almost-completed contest states by deduction, game-learning programs generally use only a

neural net or only temporal difference learning or only explanation-based learning.

Aside from TD-gammon, game-learning programs tend to be overwhelmed by the highly

detailed, possibly inaccurate knowledge they acquire. As a result, their performance is either

unacceptably slow or not at the level of a human expert (Fawcett & Utgoff, 1991; Freed, 1991;

Levinson & Snyder, 1991; Morales, 1991; Wilkins, 1980). Consider, for example, T2, which

learned 45 predicate calculus expressions for tic-tac-toe with 52 exception clauses after 800

contests (Yee, Saxena, Utgoff, & Barto, 1990). There is no natural organization for this

knowledge, and binding during search is costly. Clauses and exceptions may subsume each other

and are oriented toward optimal (shortest contest length) play. Although these deduced truths

support correct play, they afford too much information to provide real-time decision-making

guidance. Such programs are acquiring exhaustive knowledge of the problem space, not just

knowledge about how to play expertly there.

8.2 Driving Discovery

The distinctive property of discovery learning is that the learner is expected to formulate and

direct its own tasks, rather than to follow the examples or the tasks set by an instructor.

Discovery learning is notoriously difficult because the program must focus its own attention.

Early work on mathematical discovery, for example, was found to be unintentionally biased by

LISP, the language in which the concept definitions were formulated (Lenat, 1976; Lenat &

Brown, 1984; Ritchie & Hanna, 1984). Focus of attention requires meta-knowledge: a measure

Learning in the Right Places 37

of self-awareness and a metric for interestingness. A discovery program must therefore either

begin with a bias as to what is interesting or must learn it.

If interestingness were domain independent, or if the program were restricted to a set of

related domains, interestingness could be defined in advance. Three fundamental elements of the

definition are surprise (i.e., expectation failure), curiosity (i.e., inconclusive knowledge), and

ignorance (i.e., computation failure). Each of these is an important indication of inadequate

knowledge and often cited by people as the reason they formulate a task.

Surprise occurs when a learner expects something different from what actually occurs, for

example, a robot believes it has picked up a wrench and then determines that the wrench is still

on the table. Surprising states are a kind of key node. Indeed, the position in Figure 5(c) is

interesting because it violates the expectation that X will win. Langley’s BACON program

determined its explorations by surprise when data did not fit curves as it was expected to do

(Langley, Simon, Bradshaw, & Zytkow, 1987).

Curiosity is spurred by inconclusive data. Pell has considered incomplete experiential data

about the efficacy of a move in Go on a 9 ∞ 9 board (Pell, 1991). His program gathered statistics

on the wins and losses associated with individual moves. It pursued moves that had a true mean

of winning most likely to be better than a fickleness parameter. This amounts to a forced

exploration of situations which are not clearly categorized by the feature set and the program’s

playing experience. Against an external, hand-coded expert, Pell’s program with fickleness .5

performed better than a program that simply chose a move based on the historical data. In the

context of key nodes, the primary difficulty with this approach is that it is directed toward move

preference, rather than toward knowledge acquisition for expert behavior. Thus the learning it

results in is reactive (what to do) and not particularly transparent.

Moore has a program for a learning control system that attempts to concentrate experience in

portions of the control space relevant to the current task (Moore, 1991). His program introduces

some randomness into an otherwise carefully learned controller. He shows that random

perturbations of a decision are better than random decisions, and that predictive analysis of

Learning in the Right Places 38

random perturbation is even more effective. This last class of methods attempts to harness some

regularity in the space to identify good decisions. The tacit assumption in his approach is that the

value of an action is to some extent continuous in the space. Although that may be true for

direction in his toy car domain, it is not necessarily true in many other domains, including game

playing.

Ignorance was the impetus to plan to learn, in the context of biological research, for Hunter’s

IVY (Hunter, 1989). This opportunistic planner generated knowledge goals and saved them until

appropriate knowledge arrived in the system. An IVY-inspired example of ignorance-driven

search would be to seek a situation in which one decision-making principle (Advisor) would be

inapplicable or always take precedent over another one. Rather than attempt to construct such

states, the program could save their partial descriptions and alert itself for analysis when they

arose.

The brevity of this survey of related work shows that driving discovery is a little-addressed

task, although its principles (surprise, curiosity, and ignorance) are now clearly identified. This

successes of some of the work cited here bode well for giving a learning program (and perhaps a

learning person) more control of its experience.

8.3 Key Nodes, Cases, and Exemplars

Two other ways to address the acquisition of expertise in a large search space from limited

experience in it are case-based reasoning and exemplars. Case-based reasoning (CBR) attempts

to draw an analogy between a case (an old, previously-solved and retained problem, such as a

state from which a move must be chosen) and a new, unsolved one. If an analogy is found, the

case-based reasoner tries to adapt the old solution to serve as a solution to the new problem.

(See, for example, Ram, 1993; Veloso & Carbonell, 1993.) Cases are abstracted and then

indexed by relevant features to speed retrieval. Given the right cases in a domain, and effective

algorithms to match cases and to adapt solutions, a case-based reasoner should function expertly

in a domain where it has limited experience.

Learning in the Right Places 39

There are several differences between case-based reasoning and the theory of key nodes as

proposed here. Usually every experienced problem distinct after abstraction becomes a case, and

is therefore retained. Retained cases serve much like Hoyle’s useful knowledge; they are

possibly relevant to future performance, and solutions constructed from them are probably

correct. In ordinary CBR, however, all cases are equally important; the strength of their role in

future problem solving does not distinguish them. Key nodes, on the other hand, are not

necessarily retained, but are distinguished precisely because they make a greater than average

contribution.

An exemplar is a case that serves as prototype for some members of its class (Porter, Bareiss,

& Holte, 1990). Like a key node, an exemplar is distinguished from other experiences in the

search space. An exemplar can provide so much information that other members of its class need

not be consulted at all; a key node can lead to the acquisition of such powerful information that

other nodes need not be visited at all. Unlike a key node, however, an exemplar is always

retained and used as a primary source for the construction of a solution, while useful knowledge

acquired at key nodes is in no way distinguished as special. Knowledge from key nodes can

therefore be intermingled and applied in a variety of unanticipated ways, whereas the

combination of exemplars is more complex.

Unlike key nodes, it is easy to show that cases and exemplars are used by people to reason

and to teach. CBR is, however, generally intended as a response to experience in the problem

space, rather than a constructor of its own new learning experiences. Thus guidance to new cases

is not an issue, as it is for key nodes; one simply relies upon the trainer to present the relevant

cases, or hopes for the best. The role of cases in learning is also different; they offer paradigms

for solution construction, and are expected to provide a general-purpose plan. Key nodes, in

contrast, are not expected to be near-answers, only worthwhile learning experiences.

A domain like game playing is, in any case, a poor candidate for CBR. Game playing lacks a

powerful general feature language for indexing and must contend with a second, uncooperative

and unpredictable contestant. In addition, game trees have two structural differences from the

Learning in the Right Places 40

typical case-based reasoning domains: discontinuity and goal irregularities. Game trees lack

continuity; often even the relocation of a single playing piece to an immediately adjacent

position destroys any deep similarity between a state and its perturbation. In addition, although

“… with all case-based systems, the assumption is that the domain itself is regular with regard to

the goals that will tend to be conjoined,” there is no guarantee of that in game-playing

(Hammond, Converse, Marks, & Seifert, 1993, p.107). The goal in game-playing is to achieve

the best possible outcome permitted by the structure of the game tree. Beyond that, there are

many game-dependent subgoals, like queening a pawn in chess or making a mill in nine men’s

morris. A problem state might be generalized as an interaction among subgoals, if they could all

be identified, noticed, and remembered. The current state of the art in game-playing programs, in

this author’s estimation, focuses upon overly-specific generalizations that overlook the themes

that underlie play.

9. Conclusions
If the knowledge intrinsic to expert performance can only be extracted after all, or even most, of

the nodes in an intractably large search space are visited, then prospects for a person to learn

expertise there would be dim. The existence of human experts in spaces intractable for them

argues that most of the important knowledge is located at a limited number of key nodes. Thus,

visiting the key nodes should become a priority during learning in a very large space, regardless

of the learning strategy used after arrival there.

Hoyle is predicated on the idea that general expertise in a broad domain can be efficiently

instantiated for a subdomain to develop specific expertise there, as when general game-playing

knowledge is applied to a particular game. For Hoyle, this is discovery learning, triggered by its

experience during play. Although Hoyle exploits non-experiential knowledge (like the rules, the

Advisors, and various knowledge representations), the program will learn nothing unless it plays.

For human experts, too, experience is the catalyst for learning. Thus the focus on key nodes is

appropriate.

Learning in the Right Places 41

Deliberate direction to key nodes is well-guided search. Given the goal of learning to

perform expertly in a large space, a theory for well-guided search begins with the following

principles:

• There are key nodes where important knowledge may be extracted by the learner.

• Key nodes appear in clusters.

• Guidance to those key nodes is both appropriate and necessary.

• Internal direction to key nodes is available from high-quality decisions made by the learner.

• External direction to key nodes can be managed by the trainer.

• A mixture of external direction to key nodes and exploration in their vicinity is a productive

way to exploit the clusters of key nodes in a large space and to compensate for trainer error.

References
Allard, F., Graham, S. & Paarsalu, M. E. (1980). Perception in sport: Basketball. Journal of

Sport Psychology, 2, 14-21.

Anantharaman, T., Campbell, M. S. & Hsu, F.-h. (1990). Singular extensions: Adding

selectivity to brute-force searching. Artificial Intelligence, 43(1), 99-110.

Berlekamp, E. R., Conway, J. H. & Guy, R. K. (1982). Winning ways for your mathematical

plays . London: Academic Press.

Berliner, H. & Ebeling, C. (1989). Pattern Knowledge and Search: The SUPREM

architecture. Artificial Intelligence, 38(2), 161-198.

Binet, A. (1894). Psychologie des grands calculateurs et joueurs d’échecs . Paris: Hachette.

Boyan, J. A. (1992). Modular neural networks for learning context-dependent game

strategies. Master’s thesis, University of Cambridge.

Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47(1-3),

139-160.

Charness, N. (1981). Search in chess: Age and skill differences. Journal of Experimental

Psychology: Human Perception and Performance, 7, 467-476.

L
e
a
r
n
i
n
g

i
n

t
h
e

R
i
g
h
t

P
l
a
c
e
s
 43

E

p

s

t

e

i

n

,

S

.

L

.

(

1

9

9

2

)

.

P

r

i

o

r

k

n

o

w

l

E

p

s

t

e

i

n

,

S

.

L

.

(

1

9

9

4

a

)

.

F

o

r

t

h

e

r

i

E

p

s

t

e

i

n

,

S

.

L

.

(

1

9

9

4

b

)

.

T

o

w

a

r

d

a

n

E

p

s

t

e

i

n

,

S

.

L

.

,

G

e

l

f

a

n

d

,

J

.

&

L

e

s

n

E

r

i

c

s

s

o

n

,

K

.

A

.

&

C

h

a

r

n

e

s

s

,

N

.

(

1

9

E

r

i

c

s

s

o

n

,

K

.

A

.

,

K

r

a

m

p

e

,

R

.

T

.

&

T

E

r

i

c

s

s

o

n

,

K

.

A

.

&

S

m

i

t

h

,

J

.

(

1

9

9

1

)

E

r

i

c

s

s

o

n

,

K

.

A

.

&

S

t

a

s

z

e

w

s

k

i

,

J

.

(

F

a

w

c

e

t

t

,

T

.

E

.

&

U

t

g

o

f

f

,

P

.

E

.

(

1

9

F

r

e

e

d

,

M

.

(

1

9

9

1

)

.

L

e

a

r

n

i

n

g

s

t

r

a

t

e

g

G

a

s

s

e

r

,

R

.

(

I

n

p

r

e

s

s

)

.

S

o

l

v

i

n

g

n

i

n

G

o

l

d

i

n

,

S

.

E

.

(

1

9

7

8

)

.

M

e

m

o

r

y

f

o

r

t

H

a

m

m

o

n

d

,

K

.

,

C

o

n

v

e

r

s

e

,

T

.

,

M

a

r

k

s

,

H

o

l

d

i

n

g

,

D

.

(

1

9

8

5

)

.

T

h

e

p

s

y

c

h

o

l

o

g

y

H

u

n

t

e

r

,

L

.

(

1

9

8

9

)

.

K

n

o

w

l

e

d

g

e

a

c

q

u

i

L

a

n

g

l

e

y

,

P

.

,

S

i

m

o

n

,

H

.

A

.

,

B

r

a

d

s

h

a

L

e

n

a

t

,

D

.

B

.

(

1

9

7

6

)

.

A

M

:

A

n

a

r

t

i

f

i

L

e

n

a

t

,

D

.

B

.

&

B

r

o

w

n

,

J

.

S

.

(

1

9

8

4

)

L

e

v

i

n

s

o

n

,

R

.

&

S

n

y

d

e

r

,

R

.

(

1

9

9

1

)

.

M

o

o

r

e

,

A

.

(

1

9

9

1

)

.

K

n

o

w

l

e

d

g

e

o

f

k

n

o

M

o

r

a

l

e

s

,

E

.

(

1

9

9

1

)

.

L

e

a

r

n

i

n

g

f

e

a

t

u

P

e

l

l

,

B

.

(

1

9

9

1

)

.

E

x

p

l

o

r

a

t

o

r

y

l

e

a

r

n

P

o

r

t

e

r

,

B

.

W

.

,

B

a

r

e

i

s

s

,

R

.

&

H

o

l

t

e

R

a

m

,

A

.

(

1

9

9

3

)

.

I

n

d

e

x

i

n

g

,

e

l

a

b

o

r

a

t

R

a

t

t

e

r

m

a

n

,

M

.

J

.

&

E

p

s

t

e

i

n

,

S

.

L

.

R

i

t

c

h

i

e

,

G

.

D

.

&

H

a

n

n

a

,

F

.

K

.

(

1

9

8

S

c

h

a

e

f

f

e

r

,

J

.

,

C

u

l

b

e

r

s

o

n

,

J

.

,

T

r

e

l

S

c

h

u

l

t

z

,

A

.

C

.

&

D

e

J

o

n

g

,

K

.

A

.

(

1

S

h

n

e

i

d

e

r

m

a

n

,

B

.

(

1

9

7

6

)

.

E

x

p

l

o

r

a

t

o

r

T

e

s

a

u

r

o

,

G

.

(

1

9

9

2

)

.

P

r

a

c

t

i

c

a

l

i

s

s

u

V

e

l

o

s

o

,

M

.

&

C

a

r

b

o

n

e

l

l

,

J

.

(

1

9

9

3

)

.

W

a

t

k

i

n

s

,

M

.

J

.

,

S

c

h

w

a

r

t

z

,

D

.

R

.

&

W

i

l

k

i

n

s

,

D

.

(

1

9

8

0

)

.

U

s

i

n

g

p

a

t

t

e

r

n

s

Learning in the Right Places 44

Yee, R. C., Saxena, S., Utgoff, P. E. & Barto, A. G. (1990). Explaining temporal differences

to create useful concepts for evaluating states. Proceedings of the Eighth National Conference on

Artificial Intelligence (pp. 882-888). Boston, MA: AAAI Press.

Learning in the Right Places 45

Appendix

Game-Dependent Knowledge
HOYLE’s game-dependent prior knowledge is kept to a minimum. This section provides the

rules for two games, tic-tac-toe and nine men’s morris, first as a human might define them and

then as Hoyle is given them, in its game frame. This is the only kind of game-dependent

information Hoyle is given before it learns to play. Each game frame consists of nine variables

and eight functions. (There are a few additional descriptors, such as the number of boards that

are displayed on the screen during play before it is scrolled. They support implementation but

contain no relevant playing knowledge)

The functions in the game frame appear to Hoyle as “black boxes,” that is, Hoyle passes

arguments to them and receives answers but cannot inspect them. For example, there is no way

to determine if captures can happen in a game except by playing it. Directions for the user are

only displayed on the screen to inform a human contestant. The move input reader communicates

with a human contestant at the keyboard. The move filter tests that an input or calculated move

obeys the rules. The display function draws the current state on the screen. The move effector

applies a move to a state to produce the next state, that is, it makes a move. The legal move

generator calculates the list of all rule-abiding moves from a given state. The endp, winp, and

lossp predicates compute whether a given state is the last in a contest, and, if so, whether it is a

win or a loss. The visualize function transforms a list-like board into an array representation; the

devisualize function reverses that transformation. Unless the display graphics are elaborate, the

functions referenced in the game frame typically require only about 70 lines of code in all. The

code is object-oriented and contains no game-specific features or evaluation function.

A. Tic-tac-toe and Lose Tic-tac-toe

Tic-tac-toe is played on a 3 ¥ 3 grid. The contestant that moves first has five X’s; the other

contestant has four O’s. Initially the board is empty. A turn consists of placing one of your

playing pieces in any empty square. The first one to place three owned playing pieces in a row,

Learning in the Right Places 46

vertically, horizontally, or diagonally, wins. There are eight such winning lines. Play ends in a

draw when there are no more empty squares.

In the game definition for tic-tac-toe in Table A1, the squares in the grid are numbered from

left to right, one row at a time, beginning with 1. The primary internal representation of every

two-dimensional game board is a list. (Note that there is therefore no explicit representation of

corner, center, or edge, although one may be computed.) Different Advisors use different

representations, but the list-like one predominates. The only changes required to transform

Hoyle’s tic-tac-toe rules into lose tic-tac-toe rules would be to reword the directions for a human

contestant and to interchange the way the winner and loser are computed.

Learning in the Right Places 47

Table A1: Hoyle’s Rules for Tic-tac-toe

 Name: tic-tac-toe

 Token for Player: X

 Token for Opponent: O

 Initial board: (NIL NIL NIL NIL NIL NIL NIL NIL NIL)

 Adjacency graph: NIL

 Visible predrawn straight lines: NIL

 If square grid, dimension: 3

 Piece may change location once played: no

 Winning lines: ((1 2 3) (4 5 6) (7 8 9) (1 4 7) (2 5 8) (3 6 9) (1 5 9) (3 5 7))

 Directions for the user: directions-tic-tac-toe

 Move input reader: reader-tic-tac-toe

 Move filter: legalp-tic-tac-toe

 Display function for current state: display-tic-tac-toe

 Move effector: effector-tic-tac-toe

 Exhaustive legal move generator: generator-tic-tac-toe

 Predicate to detect end of contest: endp-tic-tac-toe

 Predicate to calculate winner: winp-tic-tac-toe

 Predicate to calculate loser: lossp-tic-tac-toe

 Visualize: visualize-tic-tac-toe

 Devisualize: devisualize-tic-tac-toe

Learning in the Right Places 48

B. Nine Men’s Morris
1 2 3

4 5 6

7 8 9

10 11 12 13 14 15

16 17 18

19 20 21

22 23 24

Figure A1. The game board for nine men’s morris.

Nine men’s morris is played on the game board in Figure A1. The contestant that moves first has

nine black playing pieces; the other contestant has nine white ones. A playing piece may only

rest on the intersection of two or more lines; there are 24 such positions. The game has two

consecutive stages, a placing stage and a sliding stage. In the placing stage, the initial board is

empty, and a turn consists of placing one’s previously-unused playing piece on an empty

position. Once all 18 playing pieces are on the board, the sliding stage begins, and a turn consists

of sliding one’s playing piece along a line to the next empty position. No playing piece may

jump over another or be lifted from the board during a slide. Three of the same color playing

pieces in a straight line along any side of any square (e.g., 1-2-3 or 7-12-16) is called a mill. Each

time a contestant achieves a mill, she immediately removes a playing piece of the opposite color

that is not in a mill. If all markers of the color to be removed are in mills, any such playing piece

may be removed. Removed playing pieces never return to the board. The first one reduced to two

playing pieces or unable to slide loses.

Hoyle’s game definition for nine men’s morris appears in Table A2. Note that there is no

explicit representation of mill, nor of square, corner, center, or edge.

Learning in the Right Places 49

Table A2: Hoyle’s Rules for Nine Men’s Morris

 Name: nine-mens-morris

 Token for Player: B

 Token for Opponent: W

 Initial board: (NIL NIL … NIL)

 Adjacency graph: ((1 2) (1 10) (2 1) (2 3) (2 5)… (24 15) (24 23))

 Visible predrawn straight lines: ((1 2) (1 10) (2 1) (2 3) (2 5)… (24 15) (24 23))

 If square grid, dimension: NIL

 Piece may change location once played: yes

 Winning lines: NIL

 Directions for the user: directions-nine-mens-morris

 Move input reader: reader-nine-mens-morris

 Move filter: legalp-nine-mens-morris

 Display function for current state: display-nine-mens-morris

 Move effector: effector-nine-mens-morris

 Exhaustive legal move generator: generator-nine-mens-morris

 Predicate to detect end of contest: endp-nine-mens-morris

 Predicate to calculate winner: winp-nine-mens-morris

 Predicate to calculate loser: lossp-nine-mens-morris

 Visualize: visualize-nine-mens-morris

 Devisualize: devisualize-nine-mens-morris

Learning in the Right Places 50

Author Note
The development of Hoyle was supported in part by the National Science Foundation,

#9001936. This work has benefited from conversations with Anders Ericsson, Jack Gelfand,

Tom Mitchell, and Stan Matwin. The author takes full responsibility for any remaining

obscurities. Pascal Abadie and Joanna Lesniak provided expert programming support.

Correspondence concerning this article should be addressed to Susan L. Epstein, Department

of Computer Science, Hunter College, 695 Park Avenue, New York, New York, 10021.

Electronic mail may be sent via Internet to sehhc@cunyvm.cuny.edu.

