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ABSTRACT 
 
This paper reports on a novel approach to the design and 
implementation of a spoken dialogue system. A human sub-
ject, or wizard, is presented with input of the sort intended 
for the dialogue system, and selects from among a set of 
pre-defined actions. The wizard has access to hypotheses 
generated by noisy automated speech recognition and que-
ries a database with them using partial matching. During the 
ambitious study reported here, different wizards exhibited 
different behaviors, elicited different degrees of caller affin-
ity for the system, and achieved different degrees of accu-
racy on retrieval of the requested items. Our data illustrates 
that wizards did not trust automated speech recognition hy-
potheses when they could not lead to a correct database 
match, and instead asked informed questions. The wealth of 
data and the richness of the interactions are a valuable re-
source with which to model expert wizard behavior.  
 
Index Terms— spoken dialogue systems, Wizard of Oz 
study, corpus resources 
 

1. INTRODUCTION 
 

In the design of a spoken dialogue system (SDS), a Wizard-
of-Oz study offers a window into human expert behavior 
and supports learning a model of expertise. In such a study, 
a human subject (the wizard) is presented with real or simu-
lated automated speech recognition (ASR) output, and her 
actions in response are recorded [12, 15, 20]. Voice search 
allows a wizard to query a backend directly with ASR out-
put, and receive returns ranked by a similarity score [14]. 
The thesis of this work is that a study with an embedded 
wizard who uses voice search will produce a rich and novel 
corpus that exhibits varied performance among wizards and 
callers. This paper describes the collection of such a corpus 
of caller-wizard interactions. 

In other work, wizards who had difficulty interpreting 
ASR (non-understanding) tried to continue their task in 
ways other than clarifying or repeating the utterance [15, 
20]. The corpus described here highlights the alternatives 
wizards used when they were uncertain about what the 
caller had said. Our wizards worked to interpret the caller’s 

request, given noisy ASR, voice search, and a large set of 
pre-specified questions derived from prior work. The princi-
pal result of this study is that two very different wizard 
strategies achieved similar success. In one approach, wiz-
ards were confident in their own assessment of the hypothe-
ses’ accuracy and the relevance of database returns. In the 
other, wizards asked more questions, sought confirmation 
more often, and had lengthier dialogues that were not neces-
sarily more accurate but gave callers a sense of greater un-
derstanding and progress. The least successful wizard 
strategies differ from both approaches. This data will ini-
tially be used to train models of successful behavior to im-
prove the SDS. The corpus, to be released in 2011, can sup-
port many other investigations. 

The next section discusses background and motivation for 
this experiment. Subsequent sections describe our domain of 
investigation and experimental design, and provide a pre-
liminary analysis of the collected corpus. The final section 
discusses how we will apply this important resource. 
 

2. MOTIVATION AND BACKGROUND 
 
This work seeks to elicit strategies that will serve well with 
the range of ASR performance common in fielded dialogue 
systems, a word error rate (WER) at best near 30%-35% and 
as high as 70% [11]. An effective SDS should minimize 
both misunderstandings and non-understandings. One way 
to address this goal is to aim for high accuracy in database 
retrieval despite high WER. The need to correct the sys-
tem’s misunderstandings, however, can frustrate the caller, 
and such attempts are more poorly recognized than non-
correction utterances [6]. For non-understanding, re-
prompting the caller for the same information often fails 
when hyperarticulation results in similar, or even worse rec-
ognition. Rather than frustrate the caller, wizards often use 
more creative ways to re-elicit the same information — they 
use contextual information and confirm that some commu-
nication has occurred.  

In related work, wizards given ASR output performed sur-
prisingly well despite a high WER [15]. Although dialogues 
about finding directions had a WER of 42%, misunderstand-
ing occurred only 5% of the time, and partial understanding 
and non-understanding 20% of the time each. Rather than 



signal non-understanding, wizards continued a route de-
scription, asked a task-related question or requested a clari-
fication. Despite the high percentage of partial and non-
understandings, users reported that they were well under-
stood by the system. A dialogue study for a multimodal 
MP3 player application simulated noisy transcription by 
word deletion, and varied task difficulty by deletions of be-
tween 20% and 50% [12]. It also introduced lexical ambi-
guities in the database to elicit different kinds of clarifica-
tion strategies. In the noisy condition, wizards asked for 
clarifications about twice as often as occurred in similar 
human-human dialogue. Another study of dialogues for 
tourist requests also artificially varied WER [20]. It reported 
that, under medium WER, task-related questions led more 
often to full understanding than did an explicit signal of 
non-understanding. 

In an earlier study, we provided context for ASR disam-
biguation through voice search [7, 8]. Subjects queried a da-
tabase of book titles and then selected the correct title from 
among as many as 10 returns with the highest match scores. 
(Matching is further described in Section 4.) In 4172 title 
cycles with high (71%) WER, voice search returned a list of 
more than one title to choose from 53.26% of the time, and 
otherwise returned a single, high-scoring candidate. When a 
title appeared among the search results, the subject either 
identified it with confidence (26.53%), identified it with 
some uncertainty (68.72%), or gave up (4.75%).  

During a full dialogue the subject might have requested 
clarification on the uncertain identifications. Although voice 
search can improve recognition [17], there will always be a 
residue of cases where the input is so noisy that voice search 
fails. In those cases, models of how wizards disambiguate 
among voice search returns or use them to ask informed 
questions can be used to further improve the system. We 
were able to predict wizard behavior with accuracy as high 
as 82.2% from decision trees learned on a combination of 
system and session features recorded during the experiment. 
Linear and logistic regression models achieved comparable 
accuracy. These results motivated the experiment reported 
here, where, in full dialogues, wizards could use voice 
search and ask questions to disambiguate noisy ASR. 

 
3. DOMAIN OF INVESTIGATION 

 
The Wizard-of-Oz study reported here models book order 
transactions at the Andrew Heiskell Braille and Talking 
Book Library, a branch of the New York Public Library and 
part of the National Library Service (NLS). Patrons receive a 
monthly catalogue of new and popular library holdings, with 
book titles, authors, and catalogue numbers. Patrons’ re-
quests are handled by telephone, and received by mail. 
Given increasing caller volume and limited staff, Heiskell 
and other NLS libraries could benefit greatly from an SDS 
that automates some borrowing requests. 

The baseline SDS CheckItOut was implemented within the 
Olympus/Ravenclaw dialogue system architecture [4]. 

Olympus has thus far supported about a dozen substantial 
dialogue systems in different domains, including Let’s Go 
Public! [11]. Among the Olympus components, we chose 
PocketSphinx for speech recognition, and used freely avail-
able acoustic models of Wall Street Journal dictation 
speech, adapted with about 8 hours of spontaneous speech 
for our domain. The speech data for the current experiment 
has not yet been transcribed, but a sample of 315 transcribed 
utterances with the same recognition settings and 6 speakers 
suggest that the WER was about 50%. 

For natural language understanding, we used Phoenix, a 
robust, semantic parser [19]. Phoenix produces one or more 
semantic frames per input ASR string. When some words 
cannot be parsed, a frame may be a discontinuous sequence 
of slots. Each slot has an associated context-free grammar 
(CFG), and corresponds to a concept. To manage the large 
vocabulary and rich syntax of book titles, we parsed the en-
tire 71,166-title database with a large-coverage dependency 
grammar [1], and then mapped the parses to the CFG format 
Phoenix requires. The remaining Phoenix productions were 
generated by hand. The grammar and language models for 
book titles were built from 3000 randomly-selected book ti-
tles. We also used the Apollo interaction manager [10] to 
detect utterance boundaries using information from speech 
recognition, semantic parsing and utterance-level confi-
dence, as measured by the Helios confidence annotator [2].  

CheckItOut’s backend accesses a sanitized version of He-
iskell’s database of 5028 active patrons, plus its full book 
and transaction databases for 71,166 titles and 28,031 
authors. Although titles and author names include 54,448 
distinct words, CheckItOut’s vocabulary, as reflected by its 
grammar and language model, consists of only 8,433 words. 
For the experiment described here, a wizard server replaced 
the dialogue manager. Runtime data from many components 
supported the construction of models of wizard behavior 
that can be used to improve the baseline system.  
 

4. EXPERIMENTAL DESIGN 
 
Ten callers (5 male, 5 female) each made 15 calls to each of 
6 wizards (3 male, 3 female), for a total of 900 calls. Wiz-
ards and callers were recruited by email and flyers to stu-
dents at Hunter College, Columbia University, and New 
York University. We trained 4 male and 5 female wizard 
candidates as follows. To familiarize them with the custom 
database query used in both experiments (described below), 
trainees were given 24 ASR strings with 5 candidate search 
results from our previous experiment [7, 8], and asked to se-
lect which, if any, of the search results matched the ASR. 
Next, trainees were given a visual and verbal description of 
the wizard graphical user interface (GUI, also described be-
low), and watched the trainer perform as wizard on a sample 
call. Each trainee then made five test calls during which she 
could ask questions and talk to the trainer. We chose as wiz-
ards those trainees who were most motivated and skilled at 
the task. Each caller also made five training calls during 



which she could question the trainer via chat.  
The trainer was in the room with the wizard during data 

collection, and could communicate with the caller via chat 
to coordinate breaks between calls and to restart the system 
if necessary. This facilitated the complex wizard-caller pair 
scheduling and dealt with unforeseen difficulties. On the 
rare occasion of a system crash, the call was not preserved.  

Before each call, the caller accessed a web page that pro-
vided a scenario with patron identity (telephone number, 
name, and address) plus a list of four books randomly se-
lected from the 3,000 titles used to construct the book title 
grammar. Each book was described by title, author, and 
catalogue number. The caller was to request, in any order, 
one book by title, one by author, one by catalogue number, 
and the fourth by any of those request types. On each call, 
the caller first identified herself during the login for patron 
identification, and then ordered the four books. 

When a caller telephoned, the wizard interacted with her 
through two similarly-organized GUIs, one for the login and 
the other (in Figure 1) for the book requests, with the ASR 
output at the upper left. Whenever the wizard requested the 
next book, this ASR output was cleared. Given the ASR 
output, the wizard could use any substring of the ASR to 
search for a book by title, author, or catalogue number 
against the full database of 71,166 books. (Search results 
appear in the upper right of Figure 1.) A customized query 
performed partial matching on the ASR string against the 
database. It used Ratcliff/Obershelp pattern recognition 
(R/O) to evaluate the similarity of the ASR string to a data-

base book title, author, or catalogue number. The R/O score 
is the number of matching characters divided by the total 
number of characters [9]. For example, for the ASR “roll 
dwell” the three top-candidate titles and their R/O scores 
were CROMWELL (0.666), COLIN POWELL (0.636), and 
ROBERT LOWELL (0.608). 

Although wizards knew that database returns were dis-
played in decreasing match order, R/O scores did not appear 
on the GUI. Five candidate books were returned for searches 
by title or catalogue number. For author searches, up to 
three candidates were displayed for up to five matching 
authors, a maximum of 15 search results.  

At center left, the book-request GUI displayed how many 
books had been ordered in the call thus far, details about 
them, how many questions the wizard had asked, and how 
often she had asked the caller to repeat. To speak to the 
caller, the wizard selected a pre-specified prompt that was 
then forwarded to the text-to-speech component (and spoken 
to the caller). At center right the GUI displayed prompts the 
wizard used to advance the dialog: request the next book 
(with or without implicit confirmation of the book just or-
dered), inform the caller that the order is complete, offer the 
caller an optional summary of the order, or say goodbye. 
The clock in the upper left changed color after six minutes. 
Wizards were instructed to complete the current book re-
quest at that point if it were almost identified, and then end 
the call, even if all four books had not yet been ordered. 

At the bottom of the GUI were 29 question prompts in-
tended to advance the dialogue when the wizard could not 

 
Figure 1: Wizard book-request GUI for ASR “the jester” and a title search. 



match a book to the current ASR. Four signaled non-
understanding, and asked the caller to repeat or proceed to 
the next request. Six asked about what the wizard saw in the 
ASR (e.g., “How many words?”); three allowed the wizard 
to select one or more words from the ASR to ask about (e.g., 
“Did you say __?”) Eight asked general questions about the 
book request (e.g., “Did you ask for a book title”), or ques-
tions that might elicit a change in request type (e.g. “What is 
the author’s name?”). Finally, eleven asked about the search 
results to disambiguate among the search candidates. These 
allowed the wizard to make selection from elements of the 
search results (e.g., “Is the book title __?”)  

Wizards were surveyed immediately before calls num-
bered 1, 60, and 120. The first survey collected demographic 
information. The second and third surveys allowed the wiz-
ards to report on their ease with and progress on the task, 
and elicited strategy information. Callers were surveyed af-
ter calls numbered 15, 30, 60, and 90. The survey was al-
ways the same; it elicited user satisfaction measures and al-
lowed the callers to make comments.  

 
5. PRELIMINARY DATA ANALYSIS 

 
From 60 wizard-caller pairs (6 wizards and 10 callers) we 
sought 15 calls per pair, and collected 913 calls. The calls 
cover 2714 book requests in all, and 20,422 caller utter-
ances. There were 17,288 adjacency pairs, portions of dia-
logue that began with a system prompt and ended with a 
caller utterance. An adjacency pair contains one or more 
caller utterances and zero or more database searches. The 
remainder of this section reports data in the form µ (range, 
σ) where µ denotes the mean and σ the standard deviation. 

On a single call, 2.45 (0 - 5, 1.44) books were ordered, 
2.26 (0 - 5, 1.45) of which were correctly identified. (De-
spite instructions, on two calls 5 books were ordered.) 
Among all calls, 28% were fully successful (all 4 books cor-
rectly identified and ordered), and 17% were failed (no 
books correctly identified). Wizards terminated 63% of all 
calls after the 6-minute time signal. Each call averaged 
22.36 (4 - 40, 5.06) caller utterances, with 2.99 (1 - 10, 2.27) 
words per utterance. Book titles can be long — the average 
title in the scenarios was 5.96 (1 - 34, 4.38) words. In the 
full book database, 35% of the titles contain a subtitle (an 
extra phrase that follows the title and is separated from it by 
a colon). In the random sample of titles used to generate the 
scenarios for this experiment, 39% contained subtitles. Call-
ers chose whether or not to speak each subtitle.  

After each caller utterance, a wizard could ask a question 
or query the database. Among all adjacency pairs, 32% con-
tained at least one database query. When uncertain about the 
search results, wizards sometimes attempted multiple que-
ries, on different ASR substrings or with different search 
types. They averaged 1.09 (1 - 6, 0.33) queries per adja-
cency pair. Wizards often searched on multiple ASR sub-
strings: 2.9 (1 - 9, 1.76) substrings when searching by title, 
2.16 (1 - 8, 1.32) by author, and 2.07 (1 - 8, 1.13) by catalog 

number. Wizards asked 3.41 (0 - 9, 2.49) questions per book 
request; only 1% of questions came before any database 
query at all. Given the ASR string, the wizard chose to 
search by title, author or number. Of all searches, 43% were 
by title, 31% by author and 26% by catalogue number. In 
28% of the title searches, the correct title appeared among 
the search results. Author and catalogue number searches re-
turned the correct book 33% and 58% of the time, respec-
tively. When the correct book appeared among the search 
results, 85% were first on the list, 8 % second, 3% third, and 
4% further down the list.  

When uncertain about the ASR or book results, wizards 
selected a question. Wizards could ask for explicit confirma-
tion of a full concept (e.g., ask the caller to confirm the title 
with a yes/no answer) or of part of a concept (e.g., asked the 
caller to confirm a single word with a yes/no answer), or 
confirm implicitly (e.g., have the text-to-speech module 
speak the title and then ask for the next book). Table 1 re-
ports wizards’ question distributions. 
 
5.1 Wizards 
 
Two of the six wizards, WA and WB, most accurately iden-
tified the correct books (2.69 and 2.54 correct books per 
call, respectively; a paired t-test indicates no significant dif-
ference). WA is female and WB is male. They also had the 
fewest failed calls among all the wizards (7% and 11%). Al-
though both were successful, they displayed very different 
approaches to their task. There are presumably many rea-
sons for this difference. WA is a Masters student and WB an 
undergraduate; WA majored in linguistics as an under-
graduate and WB studies computer science. It is also consis-
tent with the differences in female and male styles of verbal 
communication noted in the sociolinguistic literature [18]. 

WA focused on communication, and worked hard to un-
derstand the caller’s words. She asked more questions per 
book request than any other wizard (4.09 versus 3.41 for all 
wizards) and made more database searches per book request 
than other wizards (2.1 versus 1.77 for all wizards). Among 
all wizards, WA used the move-on strategy (give up on the 
current book request by asking the caller for the next book) 
the least often: 0.39 times per call (0.67 for all wizards).  
In contrast, WB focused more on the task. He asked ques-
tions the least often (2.28 questions per book request). Al-
though he did make several searches to disambiguate the 
noisy ASR (1.73 database searches per book request), WB 
also used the move-on strategy more than any other wizard 
(1.19 times per book request). WA and WB asked similar 
kinds of questions (Table 1). Most of them concerned the 
search results or signaled non-understanding. They asked 
fewer general questions and the fewest questions about the 
ASR output. WB was the most confident wizard, with the 
fewest explicit confirmations per call on average. When un-
certain, WB preferred to confirm implicitly, and recorded 
the second most implicit confirmations per call. His task-
oriented approach was successful, but sometimes confused 



Table 1: The distribution of questions among the four question categories available to the wizards, the average number of 
confirmations per call, and the average number of questions wizards asked before making any database search.  

 All wizards WA WB WE WD 
Questions signaling non-understanding 4334 (37%) 789 (34%) 645 (42%) 613 (33%) 800 (40%) 
Questions about the ASR string 788 (8%) 46 (2%)  0 (0%) 293 (15%) 241 (12%) 
Questions about the search results 4196 (36%) 854 (36%) 628 (40%) 594 (32%) 529 (26%) 
General questions 2244 (19%) 632 (27%) 267 (18%) 368 (20%) 443 (22%) 
Average number of explicit confirmations per call 6.07 6.76 4.18 6.59 5.32 
Average number of implicit confirmations per call 0.40 0.62 0.68 0.86 0.20 
Average number of questions before search 0.35 0.29 0.21 0.42 0.67 

 
the callers (as two callers indicated in the survey). In con-
trast , and consistent with her communicative approach, WA 
often asked for confirmation. She had the second-highest 
rate of explicit confirmations per call, and third highest for 
implicit confirmations. 

The two least successful wizards, WE and WD, had the 
fewest fully successful calls (16% and 24%). WE had the 
most failed calls (24%), and both had the fewest correct ti-
tles per calls (1.9 and 2.05). WE and WD focused on under-
standing the ASR without the help of voice search. They 
asked the most ASR questions, and recorded the most ques-
tions per request before any database search (Table 1). WE 
also made the fewest database queries per adjacency pair on 
average (1.04 versus 1.09 for all wizards). 

 
5.2 Callers 
 
The caller population was deliberately varied to provide the 
wizards with a range of recognition difficulties. The best 
caller, C1, had 3.26 correctly identified books per call on 
average. 63% of his calls were fully successful and only 6% 
failed. In contrast, the two worst callers, C0 and C2, aver-
aged 0.96 and 1.13 correct titles per call, respectively. C0 
and C2 had only 3% and 6% fully successful calls, and 41% 
and 43% failed calls, respectively. C1 is male; C0 and C2 
are female. All three are native speakers of English. Demo-
graphic data collected prior to the experiment indicated that 
C1 is age 18 – 25; C0 and C2 are age 25 – 35. C0 and C1 
have an Eastern seaboard regional accent; C2 has a very 
slight Indian English accent. All three have a relatively flu-
ent speech quality, although C0’s speech rate is slow.  

Speech from C1 had the best recognition across request 
types. Whether wizards searched on title, author, or cata-
logue number, C1 had the highest percentage of database re-
turns that included the correct book (42%, 55%, and 77%, 
respectively). The book C1 requested was often returned by 
the first query; he required the fewest database queries per 
adjacency pair on average (1.05 versus 1.09 for all callers). 
C1’s well-recognized speech also produced the shortest calls 
(19.29 utterances and 270.3 seconds per call on average, 
compared to 22.36 utterances and 345.55 seconds for all 
callers).  

In comparison, speech from C0 had the worst recognition 
among all callers (only 35% on a catalog number search re-
turned the correct book versus 58% over all callers). Speech 

from C2 had the worst recognition for titles (only 11% of re-
turns include ed the correct one versus 28% over all callers) 
and authors (18% versus 33% over all callers). C0 also had 
the most utterances per calls (23.97 versus 22.36 over all 
callers). Caller performance was not correlated with utter-
ance length, however. C1 had the third fewest words per ut-
terance (2.82, versus 3 for all callers), while C2 had the third 
highest (3.11) and C0 the fifth highest (2.98). 

Across all callers, catalogue number queries were gener-
ally more successful than requests by author or title: the cor-
rect book appeared in the return 58%, 33%, and 28% of the 
time, respectively. C1 not only had the highest percentage of 
correctly identified books across request type, but also pre-
ferred the most recognized query type. Speech from C1 
evoked the highest percentage of queries by catalogue num-
ber (41% versus 26% for all other callers), and the fewest 
database queries for title and author (32% and 27% versus 
43% and 31% for all other callers). In contrast, speech from 
C0 evoked the most queries by author (37%). The recogni-
tion distribution, however, was not uniform across callers. 
C3’s title and author searches were equally successful 
(30%). Caller C4 was also atypical. Her title searches re-
turned more correct titles than did her author searches (38% 
and 30%). These differences among callers also emerged in 
the caller surveys. C3 reported that the system had difficulty 
recognizing catalogue numbers, and was better with titles 
and authors, while C9 reported that the system recognized 
author names poorly and often mispronounced them. 

 
6. CONCLUSIONS AND FUTURE WORK 

 
In a wizard study of dialogues for book ordering, two differ-
ing wizard strategies achieved the greatest success. Our 
wizards used voice search to contextualize and disambiguate 
noisy ASR. Some wizards were more confident in their own 
assessment of ASR accuracy and voice search results, while 
others asked more questions and confirmed more often. 
Wizards who relied less on voice search context to disam-
biguate noisy ASR and asked more questions before making 
any database query were less successful.  

Data from other wizard studies has been used or intended 
for use to train statistical models of wizard actions [12, 20]. 
Our earlier experiment demonstrated that we could learn 
models of wizard behavior with system features. Our newly 
collected corpus is a rich resource of diverse but successful 



wizard behavior, and can be used to train models of that be-
havior for SDSs. Our wizards’ strategies can handle high 
WER by reference to finer-grained representations, such as 
using context or phonetic similarity to disambiguate, and to 
exploit partial recognition. Moreover, competing strategies, 
such as those modeled on WA’s and WB’s behavior, could 
both be implemented in an adaptive system that gauges the 
best strategy to apply to different users, depending on user 
preference.  

Our corpus, which we will release at the end of our study, 
is distinguished by its richness. Another corpus, with simu-
lated ASR, had 1,772 turns and 17,076 words [12], com-
pared to our 20,415 user turns and 8,433 words. A different 
corpus that simulated ASR with a procedure modeled more 
directly on recognition output included only 144 dialogues 
compared to our 913 [18]. Our corpus is also distinguished 
by its collection of 117 runtime features from PocketSphinx, 
the Phoenix parser, the Helios confidence annotator, the 
backend and the dialogue history. We expect to extract addi-
tional features in post-processing. Previous work on learning 
dialogue strategies from corpora used much smaller sets of 
features; 10 features in a study to learn early error detection 
[16] and 17 features in a study to learn multimodal clarifica-
tion strategies [13]. Another study to learn non-
understanding recovery strategies used approximately 80 
features without any feature selection [3]. To our knowl-
edge, there has been no exploration of the kinds of features 
that best predict different wizard actions. 

Given our rich corpus and large set of system features ex-
tracted from different dialogue components, our next step is 
to train models to predict wizard actions with feature selec-
tion methods customized for SDSs. We expect that different 
feature combinations will be best suited to the prediction of 
different wizard actions, and that feature selection informed 
by SDS components will support learning the best models. 
The learned models will be tested in one or more SDSs. Fi-
nally, the learned models and particularly relevant features 
will provide decision rationales, as part of a repertoire of 
possibly competing strategies such those modeled on WA 
and WB, for a new SDS architecture currently under con-
struction [5].  
 
This research was supported in part by the National Science 
Foundation under awards IIS-084966, IIS-0745369, and IIS-
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