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This paper describes the Adaptive Constraint Engine (ACE), an ambitious ongoing research project to support
constraint programmers, both human and machine. The program begins with substantial knowledge about constraint
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1. INTRODUCTION

Many large-scale, real-world problems are readily represented, solved, and understood
as constraint satisfaction problems (CSPs). Constraint programming offers a wealth of good,
general-purpose methods to solve problems in such fields as telecommunications, Internet
commerce, electronics, bioinformatics, transportation, network management, supply chain
management, and finance (Nudel 1983; Freuder and Mackworth 1992). As a result, organi-
zations throughout the world already exploit CSP technology to solve difficult problems in
design and configuration, planning and scheduling, and diagnosis and testing. Yet each new,
large-scale CSP faces the same bottleneck: difficult constraint programming problems need
people to “tune” a solver efficiently. Armed with hard-to-extract domain expertise, scarce
human CSP experts must now select, combine, and refine the various techniques currently
available for constraint satisfaction and optimization.

CSP solution remains more art form than automated process, in part because the interac-
tions among existing CSP methods are not well understood. There is increasing evidence to
suggest that different classes of CSPs respond best to different heuristics (Borrett, Tsang, and
Walsh 1996), but arriving at appropriate methods in practice is not a trivial cookbook exercise
(Beck, Prosser, and Selensky 2003). At present, for each new, large-scale CSP, a constraint
programmer must seek an effective program based upon the right method combination.

The thesis of our work is that a program can learn to synthesize, from generic components,
effective programs adapted to specific CSP problem classes. This paper reports on initial
results with the Adaptive Constraint Engine (ACE) . We do not propose ACE as a substitute
for any particular constraint-solving program, but as a colleague in research. ACE can support
constraint programmers in their quest for method combination appropriate to a particular class
of problems specified by the user. (Throughout this paper, we distinguish carefully between
the programmer, who writes code, and the user, who merely submits experiments to ACE for
execution using that code.) ACE can support a novice constraint programmer in the selection
of heuristics. It can learn new, efficient heuristics, those that were previously unidentified
by experts and can be readily used by them in other programming environments. ACE can
learn heuristics for problem classes that do not succumb to the ordinary, off-the-shelf CSP
approaches. Thus we do not pit the program against others, but show results that improve
problem solving, provide insight, and/or export to other solvers.
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The principal results of this paper with respect to ACE are that:

� ACE learns to solve difficult CSPs efficiently.
� ACE characterizes different classes of CSPs differently.
� ACE learns heuristic combinations for graph coloring that correspond to well-known

methods.
� ACE has learned new heuristics that readily export to improve ordinary CSP solvers.

Moreover, the work reported here demonstrates that it is possible for a weighted mixture of
expert systems to adapt itself to a problem environment in a number of ways:

� To learn weights for its experts
� To learn how to prioritize its experts
� To learn new experts
� To learn when to ignore its experts entirely
� To learn when to stop learning

As a result, ACE’s learning can provide guidance in problem classes where ordinary CSP
approaches stumble. Noteworthy for those whose interests lie in reasoning mechanisms, ACE
can determine when it has finished learning, and can learn when and how to modify its own
reasoning structure to improve its performance.

ACE addresses expertise not over a particular set of problems, but over an entire problem-
solving paradigm. ACE is built within a general learning and problem-solving architecture
called FORR, discussed in Section 4. FORR (FOr the Right Reasons) relies on substantial
knowledge, both declarative and procedural. The programs previously built within FORR
were intended to learn to solve related problem classes, such as games (Epstein 2001) or
mazes (Epstein 1995).

The next two sections describe the inherent difficulties in learning for constraint solving,
and sketch some traditional CSP solution techniques. Subsequent sections describe ACE’s
reasoning mechanism and how it learns, report on ACE’s successes, and sketch its knowledge
representation. The paper concludes with a discussion and plans for future work.

2. THE CHALLENGE OF CONSTRAINT PROBLEMS

A CSP consists of a set of variables, each with a domain of values, and a set of con-
straints that specify which combinations of values are allowed (Tsang 1993). (For simplicity,
we restrict discussion to binary CSPs, where each constraint involves no more than two vari-
ables. Hereafter, “CSP” should be read as “binary CSP.”) A solution for a CSP is a set of
value assignments, one for each variable, that satisfies all the constraints. Every CSP has
an underlying constraint graph, which represents each variable by a vertex. An edge in the
constraint graph appears between two vertices whenever there is a constraint on the values
of their corresponding vertices. One may think of an edge as labeled by the permissible pairs
of values between its endpoints. The degree of a variable is the number of edges to it in the
underlying constraint graph. A simple example of a CSP and its underlying constraint graph
appears in Figure 1.

Many specializations of CSPs form particularly interesting problem classes:

� Graph coloring is a kind of CSP where all the domains are initially the same set of colors,
and the constraint on every edge is “not equal.”
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FIGURE 1. A simple constraint problem and its underlying constraint graph. Labels on the edges give
acceptable values for the variables in alphabetical order. For example, (3 1) on AD means A can be 3 when D is
1. This problem has exactly one solution.

� A geometric CSP is formed from a random set of points in the Cartesian plane—each point
becomes a variable in the problem; constraints are formed among any pair of variables
within a specified (parameterized) distance of each other, with additional constraints added
to connect the underlying constraint graph (Johnson et al. 1989). The result is a constraint
graph ridden with clusters of vertices (not necessarily cliques), which proves particularly
difficult for traditional solvers.

� Many real-world problems, such as register allocation and time-tabling, have a small-
world topology that is different from the average randomly generated graph with the same
number of vertices and edges. The characteristic path length of a graph is the length of
the shortest path between two vertices, averaged over all pairs of vertices. The clustering
coefficient of a graph is the average fraction of edges allowed among the neighbors of
each vertex. In a small world graph, the ratio of clustering coefficient to characteristic path
length is much higher than average. Intuitively, a high-proximity ratio makes the impact
of each value selection greater (Walsh 1999).

� Quasigroup problems are Latin square problems, that is, in an n × n quasigroup each of n2

variables participates in two cliques of size n. Quasigroup problems with holes eliminate
some (parameterized) subset of those constraints by specifying values for some of the
variables (the unspecified values are called “holes”).

Geometric problems and small-world problems model data that appears in some real-world
problems, where the constraint graph has many subgraphs that are cliques, or nearly cliques.
Quasigroups with and without holes model certain scheduling problems.

Four parameters generally characterize a CSP: <n, k, d, t>. Here, n is the number of
variables in the CSP, and k the maximum domain size. The density d of a CSP is the fraction
of possible edges it includes. For a CSP with e edges, that is 2e/n(n – 1). The tightness t
of a CSP is the percentage of possible value pairs it excludes. For a CSP with maximum
domain size k, the maximum number of admissible value pairs in a constraint is k2. The
set of all problems with the same values for n, k, d, and t forms a class of CSPs. Thus the
CSP in Figure 1 is in the class <4, 5, 0.5, 0.32>. ACE has available to it a large library of
such parameterized problem classes, each represented by thousands of randomly generated
examples. The construction of such a library requires considerable computing resources,
because problems are solved as they are generated.

A variety of programs that generate random problems within a specific class are readily
available. Such generators can produce problems with one, several, or no solutions. A problem
with low density and tightness is likely to be underconstrained and typically admits multiple
solutions, while one with high density and tightness is likely to be overconstrained and is
likely to have no solutions. Although solving a CSP is NP-hard, the most difficult problems
for a fixed number of variables and domain size are those that generally lie within a relatively
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narrow range of pairs of values of density and tightness (Cheeseman, Kanefsky, and Taylor
1991), known as the phase transition. The best-known estimate of difficulty for a CSP class is
κ (Gent et al. 1996). κ estimates the constrainedness of a set of problems as the probability that
a random assignment of values to some of their variables will be extendible into a solution.
Problem classes with κ near one are said to be at the complexity peak, that is, they generally
have a single solution that is particularly difficult to find.

Machine learning is, of course, predicated on the premise that the training set is sampled
in a way that reflects the problem space. Ideally, problem difficulty is normally distributed
across a problem space, with tails that decrease exponentially. In some important spaces,
however, such as propositional satisfiability and constraint satisfaction problems, that is not
the case (Gomes et al. 2000). Instead, problem difficulty has a heavy-tailed distribution whose
tails decay according to a power law (i.e., have a Pareto-Lévy form), rather than exponentially.
As a result, the constraint community often measures performance by medians rather than
means, to avoid the influence of the distribution tails. Because κ is a function only on n,
k, d, and t, and every problem in a class shares the same values, they have the same value
for κ . At present, there is no known way to distinguish the more difficult problems from
the less difficult ones within the same class, other than to solve them (Ruan, Horvitz, and
Kautz 2004). As a result, a randomly selected training set may consist of problems that do not
adequately, or proportionately, reflect the class. Moreover, no matter how large the training set
and how well a learning program solves problems in it, the difficulty distribution guarantees
that the program will eventually confront, during both learning and testing, several problems
far more difficult than those it previously encountered.

Not only is the difficulty of a particular problem within a class unpredictable prior to
solution, but also it is not possible to detect, without search, how many (if any) solutions a
problem has. Some difficult problems admit multiple solutions, and some easy ones have none
at all. Furthermore, if one succeeds in finding a solution to a particular problem, there is no
way to ensure that the search was the most efficient possible path to it, nor that there was not
some different, easier-to-reach solution. Thus, learning within a problem class, particularly
without exploring the entire search space for each problem, is of necessity nonuniform and
noise-ridden.

3. THE LEARNING TASK

A classic paradigm for CSP solution is the traditional state space search algorithm in
Figure 2: repeatedly select a variable and assign it a value consistent with its constraints, until
every variable has a consistent assignment. If the problem is solvable and only a single solution
is required, this process requires at least n assignments. If the problem is overconstrained, or
if all solutions are sought, this process requires full exploration of the search space.

FIGURE 2. An algorithm to find a single solution for a CSP.
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During such search, a CSP solver can apply a variety of inference and retraction methods.
When a partial assignment (a set of values assigned to a proper subset of the variables) is
incompatible with the constraints, the entire subtree rooted at the partial assignment may
be pruned from the search. An inference method propagates the implications of a newly
assigned value onto the remainder of the as-yet-unassigned variables. Different amounts of
inference are possible, and there are tradeoffs between inference effort and search savings.
A specific inference method (the central one is arc consistency) can be carried out to varying
degrees (Sabin and Freuder 1997) and with different methods (Bessière and Régin 2001).
A retraction method is a response to an inconsistent partial assignment. Thus Figure 2 can
be paraphrased as “Search the space of partial assignments of the problem, pruning forward
with an inference method and retreating with a retraction method.”

For a solvable CSP, the order in which one selects variables (variable ordering) can speed
solution, as can the order in which one assigns a value (value ordering) to a just-selected
variable. In the problem of Figure 1, for example, a good variable ordering is (A D B C), and a
good value ordering for A is (2 1). There are dozens of variable-ordering and value-ordering
heuristics in the CSP literature, but their interactions are ill-understood. Each heuristic relies
on knowledge about what to compute, but there is little guidance as to which problem classes
it works well on, whether or not it is valid throughout a single solution (or only at certain
depths in the search tree), whether or not its opposite might also be valid, or how heuristics
can be combined.

ACE’s task is to learn to solve a specified class of problems well. The standard CSP
performance criteria are applied throughout this paper: time, retractions, nodes, and constraint
checks. Time is CPU seconds devoted to the solution of a single task. (Any learning occurs
after a task and is not included in this measure.) A retraction is the withdrawal of a value
assignment because it has proved inconsistent with the constraints and the partial assignment.
A node is a partial or full assignment that is constructed during search. The search space of
full and partial assignments for a problem in <n, k, d, t> is O(kn). Finally, a constraint check
confirms that a pair of values is acceptable between two, mutually constrained variables.
Constraint checks are the classic CSP measure of work.

ACE begins with constraint solving knowledge (described in Section 7), including
chronological backtracking as a retraction method, two constraint inference methods (for-
ward checking and arc consistency), and a set of CSP ordering heuristics. What ACE learns
is additional heuristics, and how to organize all its heuristics to solve a particular class of
problems well.

4. THE REASONING MECHANISM: FORR

ACE is based on FORR (FOr the Right Reasons), a cognitively oriented architecture
for learning and problem solving. (This cognitive orientation is discussed in Section 8.2.)
FORR is a mixture of expert decision makers, a system that combines the opinions of a set Q1

of expert-like procedures to make a decision (Chatterjee and Chatterjee 1987; Jacobs 1995).
FORR actively encourages the use of multiple learning methods, multiple representations, and
multiple decision rationales. Briefly, FORR’s reasoning method combines multiple rationales
for problem solving. Although any one of these procedures could be used to search for a
solution alone, the expectation is that together they will search more efficiently and effectively.
Prior to execution, the user partitions the rationales, separating the correct ones from the
heuristics. During search, at each decision point, FORR uses the rationales to choose an
action. If no correct rationale can identify an action in the current state, then all the heuristics
are consulted together and a combination of their suggestions becomes the decision.
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One constructs a FORR-based program for a particular set of related problem classes,
such as game playing or path finding. This construction requires programming that specializes
FORR with knowledge, including what to learn about any problem class, how and when to
learn it, and what rationales generally underlie good decisions over the set of problem classes.
It is the programmer’s responsibility to specify whether each rationale is expected to be correct
or merely heuristic. ACE is a FORR-based program for constraint solving.

A FORR-based program learns when it attempts to solve a problem, or when it observes
an external expert solve one. A solution attempt is a sequence of decisions. For example,
ACE alternately selects a variable and assigns a value to it. Thus an ACE solution to the
problem in Figure 1 might be “choose A, assign A = 2, choose B, assign B = 2, choose C,
assign C = 1, choose D, D= 2.”

FORR learns to combine rationales to improve problem solving. FORR also acquires
useful knowledge (probably accurate and possibly reusable data) for each problem class
it encounters. A FORR-based program solves easy problems quickly; hard problems take
longer. A FORR-based program does not make obvious errors. It can learn new decision-
making rationales on its own, and readily incorporate them into its reasoning structure. When
a FORR-based program recognizes a situation common to problems in its classes, it uses one
or more rationales directly responsive to that situation to produce a (possibly ordered) set of
relevant decisions (Epstein 1998). Finally, a FORR-based program distinguishes, according
to the programmer’s specification, between correct rationales and merely reliable rationales
by the way it organizes its rationales.

4.1. Advisors and the Decision Hierarchy

A class-independent, decision-making rationale in FORR is called an Advisor. The role
of an Advisor is to support or oppose any number of current legal actions. A FORR-based
program, such as ACE, makes decisions based upon its Advisors’ comments. FORR controls
and measures the learning process. Both the formulation of Advisors and their organization
rely heavily on knowledge about the set of problem classes.

Each Advisor is represented as a time-limited (and therefore limitedly rational) procedure.
The input to each Advisor is the same: all learned useful knowledge, the current state, and
some set of legal actions in that state. The output of each Advisor is also uniform; it is a set
of comments, triples of the form:

< strength, action, Advisor >

where the strength of a comment is an integer in [0,10] that indicates the Advisor’s degree
of support (above 5) or opposition (below 5). The procedures themselves, however, are
not bound to any particular regulations, and they may rely on special-purpose knowledge
representations. To consult an Advisor is to solicit comments from it, that is, to execute it.

FORR treats a problem solution as a sequence of decisions from one state to the next.
For a solved problem, the first state in the sequence describes the problem, and the last state
is a desired solution. This sequence of decisions is generated from the Advisors’ comments.

FORR-based decision making is summarized in Figure 3. There are three tiers of Ad-
visors, subsets categorized by their trustworthiness and their ability to suggest individual
decisions or sets of decisions. Tier 1 Advisors and tier 3 Advisors comment only on indi-
vidual actions (in ACE, a variable selection or a value selection); tier 2 Advisors comment
on subgoal approaches, sets of actions. The programmer initially partitions Advisors into
tiers. There is no requirement that the Advisors be independent, although those in earlier
tiers clearly take precedence over those in later tiers.
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FIGURE 3. ACE’s decision-making algorithm.

Tier 1 Advisors specify a single action, and are expected to be correct and at least as
fast as those in other tiers. Tier 1 Advisors permit a FORR-based program to make easy
decisions quickly. The programmer can endow a tier 1 Advisor with absolute authority or
with veto power. With absolute authority, whatever action the Advisor mandates in a comment
is selected and executed, and no subsequent Advisor in any tier is consulted on that iteration.
For example, ACE’s Victory has absolute authority; it forces the selection of any remaining
value when the chosen variable is the last unassigned one. If a tier 1 Advisor has veto power,
the actions it opposes are eliminated from further consideration by subsequent Advisors.
For example, ACE’s Degree Zero has veto power; it implements the rationale “if a variable
has no neighbors in the constraint graph, do not select it.” Such a variable can, of course,
be postponed, because it will not conflict with any subsequent assignments. Thus Degree
Zero is correct, and it can be implemented to run quickly. Tier 1 Advisors are consulted in
order of relative importance, as pre-specified by the programmer. Victory is always first in
the ordering for tier 1, because there is no point in further computation once only a single
unassigned variable remains.

Tier 1 Advisors are consulted in sequence until either a single decision is selected by an
Advisor with absolute authority, or until vetoes reduce the set of candidate actions to a single
action. In either event, the selected action is executed to produce the next state.

If tier 1 has not made a decision and there is no current subgoal approach, all remaining
(not vetoed) actions are ordinarily forwarded to the Advisors in tier 2, which attempt to
generate a subgoal approach. Subgoals for constraint solving, however, are outside the scope
of this paper. Instead, the flow of control for ACE is pictured in Figure 4, and any remaining
actions after tier 1 are forwarded to tier 3, where all the Advisors comment in parallel.

4.2. Tier 3 Advisors and Voting

Tier 3 Advisors are heuristics that specify a single action, without absolute authority, veto
power, or any guarantee of correctness. To select an action in tier 3, a FORR-based program
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FIGURE 4. ACE’s decision hierarchy.

combines the comments of its tier 3 Advisors. Each Advisor can comment on any number of
actions. Unlike tier 1, where Advisors are consulted one at a time, in tier 3 all Advisors are
consulted at once, and a weighted combination of their comments produces a decision. (The
origin of the weights is described in the next section.) If no single action is deemed best,
one from among the best is chosen with a method specified by the user (i.e., either lexical or
random tie-breaking).

ACE’s basic (i.e., non-learned) tier 3 Advisors derive from a set of basic properties
called metrics. Each metric gives rise to a pair of dual heuristics, one of which seeks to
minimize the metric, and the other seeks to maximize it. A metric returns a number for each
possible action, for example, the degree of a variable or the number of times a value has
already been applied. Some metrics are gleaned from the literature, some are common CSP
lore, and others are naively hypothesized. A static metric is computed once, before problem
solving begins; a dynamic metric is recomputed periodically during search. For example,
one traditional metric for variable selection is the static degree of a variable, the number of
neighbors it has in the original constraint graph. The heuristic Maximize Degree supports
the selection of unvalued variables in decreasing degree order. For example, in Figure 1,
Maximize Degree would prefer variables A and D, while Minimize Degree would prefer B
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FIGURE 5. The voting computation for tier 3.

and C. Although Maximize Degree is popular among CSP solvers, ACE also implements
its dual, Minimize Degree, which supports the selection of unvalued variables in increasing
degree order. Another example of a metric, this time a naı̈ve, dynamic one for value selection
of an already-chosen variable, is common value, the number of variables already assigned
this value. Minimize Common Value supports the selection of values less frequently in use
in the partial assignment; Maximize Common Value is its dual. A full list of ACE’s Advisors
and their rationales appears in the Appendix.

Each Advisor has a learned weight and a discount factor. The discount factor serves to
introduce each Advisor gradually into the decision process. Weights are discounted until an
Advisor has commented 10 times during learning, with the expectation that by then its weight
will be representative of its accuracy.

ACE makes decisions in tier 3 through voting, a process that combines the comments
of its Advisors to determine the action with the greatest support. (See Figure 5.) Voting
multiplies the strength of the opinion of each Advisor on each action by the Advisor’s weight
and the Advisor’s discount factor. These weighted strengths are summed across Advisors for
each action. The winner of the vote is the action with the highest support. As they arise,
learned new heuristics participate in the decision process in the same manner—they enter
with a discount factor and either they vote individually, or the summary heuristic votes on
their behalf.

Clearly, to participate in voting, an Advisor must be consulted and then comment. A Q2

benchmark is a nonvoting, baseline procedure, which is presented with the same actions
as the Advisors it gauges, and comments with randomly generated strength on r randomly
chosen actions (0.5)r % of the time. A benchmark models how well random comments would
do in the same decision situations. (Commenting on only r of the choices simulates the ability
of an Advisor to discriminate among them.) Because only two kinds of weighted decisions
arise in ACE (tier 3 variable selection and value selection), there are only two benchmarks:
one for variable selection and one for value selection. Although all Advisors are consulted
during learning, only those that have earned a weight greater than that of their respective
benchmark are consulted during testing.

5. LEARNING MECHANISMS

Primarily, what ACE learns is how to combine its Advisors to solve problems in a
particular class. In support of this, ACE learns the weights used in voting for its tier 3
Advisors. These weights serve a variety of purposes: they filter out inaccurate heuristics
before testing, they identify accurate learned heuristics and their relative accuracy, they
support the reorganization of tier 3, and they determine how to replace ACE’s decision-
making mechanism in Figure 3 with a more simplistic computation.



LEARNING TO SUPPORT CONSTRAINT PROGRAMMERS 345

5.1. Weight Learning

Even though a set of heuristics is deemed appropriate, they may not all be of equal sig-
nificance or reliability within a particular problem class. Weight learning fits a FORR-based
application to correct decisions, learning to what extent each tier 3 Advisor reflects exper-
tise in a particular problem class. The comments of an often-correct Advisor gradually have
more influence during voting, while those of an often-incorrect or occasionally egregiously
incorrect Advisor are soon overwhelmed.

As observed in Section 2, regardless of κ value, the variation in problem difficulty within
a class is notoriously heavy-tailed. Therefore, among any set of randomly generated problems
within a single class there will be some that are very easy (readily solvable by any method),
and others that are extremely difficult. The difficult problems will be frequent, and success on
them will tax any algorithm that is merely ordinarily successful on the rest of the class. Thus
the reputed uniformity of a problem class is deceptive, and a program that intends to learn
within a problem class will be confronted, not by noise, but by inherent, deceptive variations
in problems within the same class, both during learning and during testing.

The algorithm we describe here, DWL (Digression-based Weight Learning), learns
problem-class-specific weights for tier 3 CSP Advisors. DWL is crafted for problems where
both errors and their cost in search nodes can be identified. DWL is intended to balance a set
of Advisors, some of which may not be present initially but arise during learning. DWL is
also deliberately tailored to manage problems whose difficulty lies on the hard tail of the dif-
ficulty distribution. It therefore somewhat undervalues strong performance on (presumably
easy) problems, with the presumption that harder problems will soon appear. DWL learns
only from solved problems, and only after a solution.

The premise behind weight learning in FORR is that the past reliability of an Advisor is
predictive of its future reliability. DWL is specifically designed to encourage short solution
paths. After a problem has been solved successfully, DWL examines the trace of that solution.
DWL extracts training examples, pairs of the form <s, d> where s is a state, d is the decision
ACE made in tier 3 for that state, and more than one possible action remained after tier 1.
The intuition behind DWL is suggested by Figure 6, which diagrams the steps in search
to a solution for the problem of Figure 1 using the variable ordering (B A C D), the value
ordering (1 2), and no inference method. The solid path in Figure 6 is the underlying perfect
search path; it includes exactly 2n correct decision steps, represented along it as black circles.
Those decisions should be reinforced. The remainder of the search consists of digressions,
subtrees whose roots (represented as white circles in Figure 6) are eventually retracted as
bad value assignments. A decision at the root of a digression is an error that produces an
over-constrained subproblem; that decision should be discouraged. Because digressions can
contain millions of steps, and because learning occurs after (not during) the solution of each
problem, nonroot steps in digressions (represented as gray circles in Figure 6) are not retained
or learned from; only the size of a digression (in number of steps) is recorded. Finally, a value
selection only serves as a training example if the forward degree of the relevant variable is
not zero.

For DWL, the quality of a decision is determined by the role that it played in each search
for a solution. Good decisions lie on the underlying perfect search path; bad decisions are
either value assignments that immediately preceded a digression, or variable selections that
led to those value assignments. DWL rewards Advisors that support good decisions or oppose
bad decisions with weight increments, and penalizes Advisors that oppose good decisions
or support bad decisions with weight decrements. Penalties are assessed in proportion to
the size of the digression; rewards are provided in proportion to the size of the search tree
relative to other problems in the same class. Furthermore, DWL discounts both rewards and
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FIGURE 6. A search tree for a CSP. The eventual solution is A = 2, B = 2, C = 2, D= 1.

penalties in proportion to the number of choices each Advisor ranks as best, in response to the
Advisor’s inability to discriminate among them. A detailed discussion of the issues underlying
unsupervised weight learning for CSPs, along with ablation experiments highlighting the role
of each facet of the algorithm, are available in (Epstein, Wallace, and Freuder, in review).

DWL learns weight wi for Advisor i with the algorithm in Figure 7. Under DWL, all
tier 3 Advisors and their benchmarks begin as equally significant, with weights of 0.05 at
the beginning of each run in an experiment. Training examples are collected during each
problem. If ACE solves the problem, DWL gauges the problem difficulty by the number
of steps required to solve it, and monitors data on all problems solved thus far, assessing
rewards and penalties to Advisors for each training example. The comments of an Advisor
on a training example and their relative strengths, determine whether or not the Advisor is
correct there. An Advisor is correct on <s, d> if and only if it prefers d over any other
legal action in s. A comment with strength in (5, 10] is interpreted as support, and one with
strength in [0, 5) is interpreted as opposition. The absence of a comment on a particular
action is interpreted as a comment with strength 5.

FIGURE 7. A high-level version of DWL.
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FIGURE 8. The weights of ACE’s variable-ordering heuristics and their benchmark (heavy line) across as
ACE solves 1000 problems from <30, 8, 0.1, 0.5>. Similar settling occurs with every CSP class we have studied
thus far.

An interesting property of DWL is that corrections become smaller, relative to the overall
weight, as learning progresses. Consider, for example, an Advisor that gets the first training
example correct, and is wrong on the second. (For clarity here, we ignore the discount
factor, and assume uniform rewards of size 10, without penalties.) After the first example,
the Advisor’s weight is 10 times the number of examples on which it gave correct advice,
divided by the number of examples on which it gave advice: 10/1 = 10. The error on the
second example, however, increases the denominator to 2, without changing the numerator,
so the new weight is 10/2 = 5, a reduction of 50%. Now consider an Advisor that gets the
first 100 training examples correct, and is wrong on the 101st. After the first 100 examples,
the Advisor’s weight is 1000/100 = 10, and after the error it is 1000/101 = 9.90, a reduction
of 1%. Figure 8 graphs the stabilization of the weights of ACE’s variable-ordering heuristics
from a single run where it learned on 1000 problems in <30, 8, 0.1, 0.5>. (We note, however,
that there may be more than one set of values to which ACE might settle, that is, the weight
set is not necessarily unique.)

5.2. Weight Stages

Even a heuristic-judged valuable within a particular problem class might not be equally
good at every search depth. It may, for example, be most useful only at the top of the search
tree. Stage breaks partition problem-solving decisions during an experiment. For example,
20–80 stage breaks in ACE define an early stage where no more than 20% of the variables
are bound, a middle stage where between 20% and 80% of the variables are bound, and a
late stage where more than 80% of the variables are bound. In FORR, weights are learned
for each stage separately. The user may specify a fixed number of equal-size stage breaks
(no more than n in ACE), a monotonically increasing list of percentages (e.g., 20, 80), or a
monotonically increasing list of number of steps (e.g., 2, 4, 6, 10).

The correct number of stage breaks and their placement are thus far set empirically, and
appear to be dependent on the problem class. Too many stages (e.g., 30 for <30, 8, 0.26,
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0.66>) overfits the data and degrades performance; indeed, a single stage often suffices. In
some classes (e.g., graph coloring), however, 20–80 stage breaks seem prescient. (Those
particular values were actually “inherited” from a FORR-based game-playing program that
used them to isolate the opening and the endgame from the middle game.) The results in
Sections 6.3 and 6.4 were achieved with 20–80 stage breaks. All the other results reported
here were produced with a single stage (i.e., no stage breaks).

5.3. Learning New Heuristics

FORR supports learning new heuristics from a regular language, each of whose expres-
sions can be interpreted as an Advisor. (Further details appear in Section 7.2.) To learn new
heuristics within such a language, FORR monitors how each possible expression would per-
form if it participated in problem solving. First, FORR generates the legal expressions for the
language with the grammar. Then, after each learning problem, each expression is given the
opportunity to comment on each training example, as if the expression were an active heuris-
tic. For each expression, FORR tallies how often an expression’s comments discriminate
among the actions, and how often those comments are correct. Initially, these expressions are
not permitted to participate in ACE’s actual decisions; they are merely monitored to estimate
their accuracy.

During learning, the status of each expression in a language is either potential, active,
spawned, or inactive. Initially, all expressions are potential, that is, monitored for possible
inclusion in decision making. After every p learning problems (p = 10 here), which may
have produced hundreds of training examples, FORR reevaluates each expression’s status.
Those that fail to discriminate or never comment are eventually made inactive, to speed
subsequent computation. Potential expressions that achieve a weight of at least 8.5 (out of
10) are promoted to active status.

Eventually, accurate expressions are used collectively during decision making, and highly
accurate ones are used individually. Active expressions provide input to their language’s sum-
mary heuristic, which combines their comments to structure its own. Once any expressions
become active, the summary heuristic participates as an Advisor in ACE’s decisions. If an
active expression achieves a weight of at least 9.5, it is spawned, that is, transformed into
an individual heuristic that participates in ACE’s decisions. A spawned expression no longer
participates in the summary heuristic’s computation. Both the summary heuristic and any
learned heuristics for an Advisor language are subject to the discount factor, so that they
enter the decision process gradually. This permits ACE to maintain its performance level as
it introduces new Advisors.

6. RESULTS

Experiments with ACE have a uniform design. In a run, we train the program, then turn
learning off and test the program. To minimize the chance that ACE was merely fortunate
enough to encounter “good” problems in the class from which it learned, we average perfor-
mance for each experiment across 10 runs. On each run, ACE learns on a different set pl of
problems (10 pl learning problems in all). On every run, however, ACE confronts the same
set pt of testing problems (distinct from all the learning problems), to judge the program’s
performance after different learning experiences against the same testing set. Because ACE
could encounter a very difficult problem at any time during learning, we limit computation
on any individual learning problem to 10,000 steps (total number of variable selections, value
selections, and retractions). During testing, however, ACE is required to solve every problem.
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There is no overlap between the learning problems and the testing problems. The user de-
signs an experiment. All experiments reported here used MAC3 maintained arc consistency
(Mackworth 1977) as an inference method, chronological backtracking, random tie-breaking
during learning, and lexical tie-breaking during testing.

This section recounts a variety of experiments with ACE. Section 6.1 shows that ACE’s
performance improves with its experience, that is, that it learns. Section 6.2 shows that
it produces distinct characterizations for different classes of CSPs. Section 6.3 demon-
strates that ACE can learn heuristic combinations related to those an expert might choose.
ACE’s rediscovery of the Brélaz heuristic, and Section 6.4 describes how ACE discovered a
new heuristic. Section 6.5 explains how ACE determines when it has learned enough, and
Section 6.6 explains how ACE can reformulate its decision-making structure.

6.1. Learning to Solve Hard Problems

Our first experiment demonstrates that ACE learns to solve hard problems, (rather than
having been tuned to do so in advance), and that the training set, despite the variety of
problem difficulty, does not impact the ultimate testing performance. This experiment uses
the class <30, 8, 0.26, 0.66>, which lies at the phase transition and is therefore predicted
to be particularly difficult for CSP solvers in general. Throughout this discussion, any cited
difference is statistically significant at the 95% confidence level.

� ACE learns to do less work. The average number of constraint checks during learning
was reduced by 72% during testing. The greatest number of constraint checks on any
individual testing problem was 418,675, versus 8,791,577 during learning.

� ACE learns to move more incisively through the partial assignment space. The average
number of steps during learning was reduced by 53%. The maximum number of steps
during any testing problem was 532, versus 9357 during learning.

In this experiment, ACE began with 40 general, constraint-solving heuristics, listed in
the Appendix. ACE is faster on testing problems in part because, during testing it does not
devote any computation time to the 22 low-weight heuristics that do not meet the cutoff after
learning. The remainder of the speedup is primarily attributable to fewer errors; indeed, the
time spent on retraction was reduced by 76% during testing.

We used pl = 80 learning problems and pt = 50 testing problems. If ACE is learning to
solve these problems, performance during testing should be markedly better than performance
during learning, and that indeed proves to be the case. The first two sets of data in Table 1
compare ACE’s performance during learning and testing. ACE solved most of its learning
problems (subject to a 10,000-step limit) and was required to solve all of its testing problems.
To display the impact of the heavy tail, both average and median values are included here.
Several points are noteworthy:

� ACE learns to solve problems faster. Despite the requirement that ACE solve all its testing
problems, the average time spent on a testing problem is 85% less than the time spent on
a learning problem. The longest time spent on any individual testing problem was 32.49
seconds, versus 1093.93 seconds during learning.

� ACE learns to make fewer mistakes. The average number of retractions during learning
was reduced by 79% during testing. The most retractions on any individual testing problem
were 472, versus 9947 during learning.
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TABLE 1. ACE’s Performance on a Set of Hard Problems <30, 8, 0.26,
0.66>, Compared With an Off-The-Shelf CSP Heuristic

Program Solved Time Checks Nodes

ACE during learning Mean 97.875% 42.83 401565.03 508.47
Median 8.66 90208.00 105.00

ACE during testing Mean 100.000% 6.62 113292.60 131.62
Median 5.41 94091.00 111.00

Min Domain Mean 100.000% 7.00 286708.53 365.84
Median 4.92 200510.00 249.00

Time is in CPU seconds. The other performance metrics are defined in the
text. Median values appear below averages. Similar behavior occurs with all
but the easiest CSP classes we have studied thus far.

Median values for retractions, constraint checks and steps actually rose during testing,
because ACE was forced to solve every problem, including the most difficult ones. We
therefore also present a second argument that learning is taking place: the effort devoted to
solving the first 10 learning problems in each run, compared to the second 10, the third 10, and
so on. This is displayed in Figure 9 measured by steps, constraints checks, and time. Note, on
every performance metric, the sharp improvement between the first 10 tasks and the second
10, followed by deterioration during the third set of 10, and then continued improvement and
apparent performance stabilization. Observe, too, in Figure 9, how the median measures are
less subject to the heavy tails and do not exhibit as much difficulty with the third set of 10
problems.

In this experiment, ACE learned weights in [0,10] for tier 3 Advisors. Although CSP
research suggests which member of each pair is correct, we left it to ACE to detect the valid
member; those results from this experiment appear in Table 2, where the cutoffs for using
heuristics in Table 2 are the benchmarks’ weights. Among the variable-ordering heuristics,
the two widely acknowledged in the constraint literature were learned as significant on every
run: Maximize Degree (maximize the degree of the variable in the original constraint graph),
and Minimize Domain/Degree (minimize the ratio of the dynamic domain size to the degree
in the original constraint graph). Observe that the heuristics with the highest weights were
learned regularly (i.e., on either 9 or 10 runs). Only one metric was learned with its dual, the
only metric not drawn from the CSP literature.

Inspection of the runs themselves indicates that the variation in difficulty within a CSP
class is indeed an issue. On two of the 10 runs, ACE got off to a bad start—it encountered
(what we believe were some relatively easy) problems on which almost any heuristic, or even
random selection, would have worked, and then reinforced whichever heuristics matched its
solution trace. Indeed, for a while on one of these troublesome runs, ACE’s weights indicated
that one should minimize degree and maximize domain/degree ratio, just the opposite of the
common wisdom. Nonetheless, by the 30th problem, ACE had recovered, and had begun to
identify the correct heuristics. In 7 out of the 10 runs, ACE also solved 1 or 2 of the 50 testing
problems without any retractions at all; that is, it made flawless decisions. These problems
presumably came from the expected “easy” tail of the distribution.

ACE’s errors are carefully monitored. During testing, the average error occurred when
3.98 variables were bound. No error on any testing problems occurred after 11 variables
had been assigned values. This observation will be used to formulate the experiment in
Section 6.6.
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FIGURE 9. Across 10 different training experiences, (a) the number of steps, (b) constraint checks, and (c)
time ACE required on the first ten problems, the next ten, and so on, in a set of 80 from <30, 8, 0.26, 0.66>.
Lighter bars represent average values; darker bars represent medians. Similar behavior occurs with all but the
easiest CSP classes we have studied thus far.

It would not be sufficient for ACE merely to identify accurate heuristics and then combine
them without weights. We demonstrate this with two voting variations on the same testing
set. The first set of data in Table 3 shows how ACE does when all the tier 3 heuristics vote
without weights (no learning). The second set in Table 3 shows the performance of only the
16 heuristics ACE found valuable (from Table 2), again without weights (weightless). In both
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FIGURE 9. (Continued)

cases a step limit of 10,000 was enforced, and there were 10 runs. The no-learning version
failed to solve 5% of the problems within 10,000 steps; ACE and the weightless version
of ACE solved all the testing problems. Because ACE’s performance during testing is far
better than during learning, we conclude that the program learns to solve hard problems.
Because this performance is consistent on the same testing set after training on 10 different
sets, we conclude that the training set does not inordinately influence ACE’s learning. Finally,
the subset of best heuristics identified by ACE clearly outperforms the full set, and ACE’s
learned weights clearly improve the decisions the best heuristics make.

6.2. Learning to Characterize a Problem Class

Our next experiments explore ACE’s ability to characterize a problem class by the Ad-
visors it identifies as accurate across runs. Recall that an Advisor is used during testing only
if its weight surpasses that of its benchmark. Such an Advisor produces comments that are
more reliable than random comments. If ACE uses an Advisor during testing on every (or
nearly every, say 9 out of 10) run, we say that it is characteristic of the problem class used
during the experiment. The set of such Advisors may be said to characterize a problem class;
we call it the weight profile for a problem class. In general, these weight profiles appear to
be consistent, that is, they are independent of the problems used during learning.

Table 4 lists ACE’s weight profiles for several different problem classes, as minimizing
or maximizing particular variable-ordering tier 3 metric. The problem classes profiled are
random problems in <30, 8, 0.1, 0.5> and <30, 8, 0.26, 0.66>, geometric problems in <20,
10, 0.6, 0.3> and quasigroups of order 10 with 60 holes. Table 4 shows that random and
geometric problems have roughly similar profiles, although there are some discrepancies.
Quasigroup problems, on the other hand, have distinct profiles; in particular, we found that
some Advisors that represent antiheuristics for random problems are favored over their op-
posites when quasigroup problems are tested. In this case, it is clear that profiles for one
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TABLE 2. Ordered by Weight Within Type, Weights in [0, 10] that
ACE Learned for CSP Heuristics and Then used During Testing on the
Hard Class of Problems, <30, 8, 0.26, 0.66>

Heuristics Weight Times Learned

Value-ordering
Maximize product domain value 1.23 10
Maximize options value 1.04 10
Minimize static conflicts value 1.04 10
Minimize domain score value 1.02 10
Maximize secondary pairs value 0.98 10
Maximize common value 0.97 5
Maximize small domain value 0.97 5
Minimize common value 0.93 2
Maximize secondary value 0.85 2
Maximize weighted domain score value 0.75 1

Variable-ordering
Maximize value pairs 3.44 9
Minimize domain/degree 2.98 10
Maximize dynamic connected edges 2.84 9
Maximize static degree 2.55 10
Maximize static connected edges 2.22 6
Maximize backward degree 1.80 4

“Times learned” is the number of runs (out of 10) on which the heuristic was
recognized as valuable. All heuristics are defined in the Appendix. Cutoffs
for value-ordering and variable-ordering heuristics are provided by their
respective benchmarks, as discussed in Section 5.1. Similar consistency
(albeit for different heuristics) occurs with all but the easiest CSP classes
we have studied thus far.

class are not appropriate for the other. This has also been verified with a non-ACE constraint
solver.

6.3. Learning Heuristic Combinations (Those a Novice Might not Know)

Our next experiments demonstrate ACE’s ability to discover empirically heuristic com-
binations that would be related to those known by problem-domain experts or CSP experts,
but likely unknown by novices. Recall that ACE has dual pairs of heuristics, one of which
maximizes a metric while the other minimizes it. Using the wrong member of such a pair
(the antiheuristic) typically makes search intractable on problems that the heuristic itself is
able to solve. By including the antiheuristics, we challenge ACE to learn which heuristics
are correct, and in what proportions. We ran two experiments, with forward checking as the
inference method, in which ACE had only variable-ordering heuristics (i.e., no value-ordering
heuristics) and the learning problems were a class of four colorable graphs on n = 20 vari-
ables, with d = 0.1. Again ACE did 10 runs, learning on 80 problems (a new set for each
run) and testing on 50 additional problems, with the same testing set on each run. In both
experiments, ACE solved all the problems on every run, and solved all the testing problems
without retraction.
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TABLE 3. The Impact of Weight Learning Is Demonstrated Here by Comparing the Perfor-
mance of Several Programs on Problems in <30, 8, 0.26, 0.66>: ACE and Two Ablated Versions
of ACE

Program Solved Time Checks Nodes

All ACE heuristics without weights Mean 95.00% 144.48 1355083.10 1664.57
Median 47.63 439726.00 547.00

Best ACE heuristics without weights Mean 100.00% 7.98 116054.63 133.84
Median 6.82 108017.00 128.00

ACE (best heuristics, weighted) Mean 100.00% 6.62 113292.60 131.62
Median 5.41 94091.00 111.00

Time is in CPU seconds. Other metrics are defined in the text. Median values appear below averages.
Similar behavior occurs with all but the easiest CSP classes we have studied thus far.

In our first coloring experiment, ACE was given only Later, a heuristic that eliminates
from consideration any variable whose dynamic domain size is larger than its degree (unless
they all are), and four pairs of dual variable-ordering heuristics for static degree size, dynamic
domain size, forward degree (number of as-yet-unvalued neighbors), and backward degree
(number of valued neighbors). The combination of Later and the ability-to-learn weights
proved powerful here. On every run, three variable-ordering heuristics were selected: mini-
mize dynamic domain size, maximize degree, and maximize forward degree. (On seven runs
a single heuristic, maximize backward degree, was also selected.) These heuristics resemble
the well-known Brélaz heuristic for graph coloring: minimize the domain size and, in the
event of a tie, maximize the degree. Moreover, the combination of the two is consistent with
the evidence presented in Bessière and Régin (1996) that minimizing domain size/degree is
a superior CSP-ordering heuristic to either minimizing domain size or maximizing degree

TABLE 4. Weight Profiles Learned by ACE for a Sample of Four Different Problem Classes

Random Random Geometric Quasigroups
Metric <30, 8, 0.1, .5> <30, 8, 0.26, 0.66> <20, 10, 0.6, 0.3> 10 × 10, 60 holes

Degree Max 10 Max 8 Max 9 –
Domain – – (Min 1) (Min 3)
Forward degree – – – Min 8
Backward degree – – (Max 3) Max 8
Domain/degree Min 9 Min 10 Min 10 (Min 3)
Value pairs Max 10 Max 10 (Max 2) Min 7
Edges Max 10 (Max 4) Max 9 –
Dynamic
connected edges Max 10 (Max 6) – Min 8

Dynamic less- – – – Max 8
connected edges Min 2

All metrics are defined in the Appendix. Entries indicate whether the metric was judged accurate as a maximum
or a minimum, and on how many runs out of 10. Entries in parentheses are not sufficiently frequent to be
characteristic of the problem class. (Unlike those of Table 2, these experiments used 20–80 stage breaks.) Distinct
weight profiles conform to the CSP literature and were expected.
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alone. Given the relatively recent vintage of this insight, its “rediscovery” by FORR is im-
pressive. The success of Maximize Backward Degree may well reflect its correlation with
both Minimize Domain (the domain will be reduced for each differently colored neighbor)
and Maximize Degree.

In our second coloring experiment, ACE was given Later plus nine pairs of variable-
ordering heuristics. This time, six heuristics were selected on every run: maximize constraints,
maximize degree, maximize dynamic edges, maximize forward degree, maximize reverse
edges, and minimize the ratio of domain to degree. (On no more than two runs, three others
were mentioned, but with lower weights.) As a result, ACE required more time to make
decisions and there was no appreciable difference in what was already very good performance.
In Section 6.6 we suggest how ACE can recover from this surfeit of knowledge. In both cases,
even when forced to cope with a larger initial set of heuristics, ACE’ has learned to discard the Q3

antiheuristics and to emphasize what experts in this field have proposed and tested: minimize
the domain size and use heuristics related to maximizing the degree.

6.4. Learning Valid New Heuristics (An Expert Might not Know)

This section describes ACE’s ability to learn and validate possibly hitherto unknown
heuristics. There is no reason to believe that ACE’s input heuristics are in any way exhaustive.
A particularly powerful one is the ratio of two of the others (minimize the ratio of the dynamic
domain size to the static degree, mDD). This led us to wonder about the efficacy of other
arithmetic combinations of metrics. We therefore formulated an arithmetic variable language
in which a learned heuristic’s metric would be a function of a pair of variable selection metrics.
(Further details on such languages appear in Section 7.2.) Results in the prior sections did
not include learning heuristics; there, ACE relied only on its initial set.

First we had ACE learn on the class <30, 8, 0.1, 0.5> and tested it there. Next, we removed
the pair of heuristics on the Domain/Degree metric from ACE (call that version ACE–) and
reran the experiment. There was no statistically significant difference in performance between
ACE and ACE– along any metric. This suggested that mDD might be unnecessary, despite
its high weight in the first experiment.

Next, we retested ACE–, this time adding the ability to learn new heuristics with a
language capable of expressing the Domain/Degree metric and using the 20–80 stage breaks
described in Section 5.2. This language provides only heuristics not included in ACE–. Again
there was no change in performance. Moreover, although the expression for mDD is part of
the arithmetic variable language, it never became active even once in 10 runs. (Recall from
Section 5.3 that only when an expression has a high estimated weight does it become active.
Any number of expressions can become active if their estimated weights are high enough.)
Instead, exactly one expression became active on every run: “maximize the product of degree
and forward degree when no more than 20% of the variables have been bound” (PDFD). With
PDFD, ACE– with the ability to learn heuristics performed just as well as ACE and as ACE–.

To explore this outstanding, learned heuristic further, we incorporated PDFD into a
CSP algorithm coded in a conventional manner, and tested it on reasonably difficult 150-
variable problems in <150, 5, 0.05, 0.24>. Our results, in Table 5, are significant for several
reasons. They demonstrate that lessons learned with ACE can be transferred to a conventional
algorithmic context, that lessons learned on easy problems can be relevant to hard problems,
and that our conventional understanding of search-order heuristics may be overly simplistic.

We tested how PDFD would impact three CSP conventional heuristics: mDD, minimize
domain size (mD), and mD after first ordering the variables by descending degree. First, we
tested each conventional heuristic on <150, 5, 0.05, 0.24>. Then we repeated the same tests,
this time replacing each conventional heuristic by PDFD in the top fifth of the search tree. It
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TABLE 5. Performance Results in Nodes Searched Per
Problem for Three Conventional Heuristics, with and without
the Product Heuristic PDFD Learned by ACE

Enhanced
Conventional Heuristic Alone Heuristic

Minimize domain size (mD) 86,065 3,218
mDD 4,277 3,218
mD after degree preorder 12,602 3,218

mDD is the Minimize Domain/Degree heuristic alone. Data
are averaged over 10 runs using code separate from ACE.
Problems had 150 variables, domain size 5, density 0.05, and
tightness 0.24. Similar behavior occurs on other classes of
random CSPs tested.

is admittedly odd that all the latter tests averaged to the same (rounded off ) search tree size,
but the top of the tree appears so dominant that, in most cases, the same nodes get visited,
albeit in a different order. With this approach, the search tree is actually somewhat reduced,
while processing time increases slightly due to the dynamic calculation of forward degree.

In general, the importance of the processing at the top of the search tree is not surprising,
but ACE allows us to make progress on turning “folklore” (e.g., what you do at the top of
the search tree is more important than what you do at the bottom) into science (or, at least,
into engineering). The fact that domain size, the conventional bedrock of variable ordering,
can be ignored at the critical top of the search tree is surprising, at least at first blush. On
reflection it would seem to make perfect sense that domain size would be less critical at the
top of the tree, before inference from search choices has as much chance to effect domain
size reduction, while forward degree would be critical at the top of the tree, where it is going
to be relatively large, and help to determine the amount of inference. We conclude that ACE
is indeed capable of making discoveries of interest to human CSP solvers.

6.5. Knowing When to Stop Learning

Recall that part of the design of an experiment with ACE is to specify pl , the number of
learning problems. Termination of learning can be more elaborate than merely counting the
number of problems addressed, however. Instead, the user may specify that learning terminate
and testing begin after a specified elapsed time, or once some skill is manifested (e.g., 10
consecutive problems solved well). A more recent innovation with DWL is the ability to halt
when learning no longer has an impact on Advisor weights.

Because DWL-calculated weight corrections have a diminishing impact (as observed in
Section 5.1), ACE can monitor weight fluctuations, to determine on its own when it should
stop learning. We call this learning to stability. ACE deems its weights to be stable (unlikely
to change further) when the standard deviation of every Advisor’s weight across a window
of the w most recent problems is no more than σ . With learning to stability, the number of
learning problems becomes an upper bound, so that ACE can choose to stop the learning
phase earlier on any run. Both w and σ are parameterized, and ACE typically reaches stability
on problems quite quickly. For example, with w = 50 and σ = 0.01, ACE reaches stability
on <30, 8, 0.26, 0.66> after only 125.4 problems.

Although increasing the window size w allows more opportunity for a particularly dif-
ficult (or easy) problem to appear, we have observed no significant performance differences
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with larger w. As one would expect, more difficult problem classes take longer to stabilize.
Nonetheless, ACE knows when it is likely to learn no more. Learning to stability shortens
learning time, without impacting performance.

6.6. Learning to Restructure Decision Making

The material in this section addresses ACE’s speed during testing. ACE outperforms
“minimize the dynamic domain size” on the hard problems of Table 1, as measured by
constraint checks, retractions, and nodes. ACE is, however, slower. Inspection indicates that
it is actually often faster to decide quickly and retract errors than to make a carefully reasoned
judgment. Three different approaches to speed up decision making (and thereby search)
are considered here: promotion, pushing, and prioritization. Each of them restructures the
decision process of Figure 4.

In other FORR-based applications, an occasional Advisor earned a weight so high that the
Advisor appeared correct. Promotion moves such a highly weighted tier 3 Advisor into tier
1. In some kinds of problems (e.g., game playing) such a risk is intolerable, because a single
error results in failure. In constraint solving, of course, an error can simply be retracted.
Nonetheless, empirical evidence from ACE suggests that rarely is the speedup available
from faster decisions worth the extended search that results from any promoted Advisor’s
occasional errors. Furthermore, no ACE Advisor achieves weights (typically around 9.5 in
other FORR-based applications) that would make it a candidate for promotion.

The problem with promotion is that it does not consider the problem state. In contrast,
pushing is a kind of promotion that goes into effect only once the problem appears readily
solvable, and then bypasses tier 3 for variable selection. During the learning phase, ACE
learns when to push by tracking the deepest error ed , the greatest number of variables ever
bound on any problem when a retraction occurred during learning. Then, only for tier 3
variable selection during testing, and only after the number of bound variables is larger than
ed , ACE consults only a single variable-ordering Advisor that qualifies for use during testing.
(Empirical results indicate that value selection should not be pushed, that is, after ed it no
longer matters much where one works in the graph, but what one does there still matters a
good deal.)

The folklore of constraint researchers includes a belief (heretofore untested) that once
“enough” variables have been assigned values “it doesn’t much matter what you do.” This
simplification is achieved by a tier 1 Advisor called Pusher, which comments only during
testing and only below ed . (The latter remains fixed during testing, regardless of subsequent
experience.) Say, for example, that ed = 17, that is, that the deepest error during learning was
observed when 17 variables were bound. In that case, during testing, for all decisions where
at least 18 variables are bound, Pusher will use only one Advisor to make the decision. Thus,
after ed , Pusher effectively promotes a single tier 3 Advisor to tier 1, and thereby avoids the
time-consuming computations of all the other accurate tier 3 Advisors. If Pusher is given no
Advisor, or its Advisor makes no comments, then Pusher makes lexically ordered decisions
after ed . If Pusher’s Advisor has several top-ranked choices, Pusher makes a lexically ordered
decision from among them. We have tested Pusher both with rationales well respected in the
constraint community (e.g., minimize the domain, minimize the domain/degree ratio) and
with variable selection in lexical order.

The data in Table 6 indicate that which Advisor should be used by Pusher is prob-
lem class-dependent. On <30, 8, 0.1, 0.5>, Pusher with Minimize Domain reduced the
median computation time without any significant change in errors; Pusher with Minimize
Domain/Degree and lexically ordered pushing produced nearly identical results. On <30,
8, 0.26, 0.66>, however, only lexical ordering produces any improvement: a small (about
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TABLE 6. The Impact of Pushing on Two Problem Classes

Program Time Retractions Checks

<30, 8, 0.1, 0.5>

ACE Mean 0.50 3.77 10701.75
Median 0.47

ACE + push Minimize Domain Mean 0.46 3.76 10701.01
Median 0.43

ACE + push Minimize Domain/Degree Mean 0.47 3.76 10701.15
Median 0.43

ACE + push Lexical Order Mean 0.46 3.76 10700.57
Median 0.43

<30, 8, 0.26, 0.66>

ACE Mean 4.15 103.41 113457.16
Median 2.94

ACE + push Minimize Domain Mean 4.06 103.06 113040.56
Median 3.83

ACE + push Minimize Domain/Degree Mean 4.03 103.37 113615.15
Median 2.83

ACE + push Lexical Order Mean 3.83 103.57 113654.27
Median 2.74

Time is in CPU seconds. Other metrics are defined in the text. Values in bold are statistically
significant. When to push and what to push appear to be CSP class-dependent.

10%), statistically significant speedup, that is, it was faster (no more errors were made) to
select a variable without computation. Inspection indicates that the deepest error is surpris-
ingly early in most classes, but that decisions are still nontrivial there: dynamic domains still
have multiple values, and the constraint graph is not a forest. Nonetheless, a simple choice
becomes the best.

Finally, prioritization partitions those tier 3 Advisors retained for the testing phase into
a hierarchy of subsets based on their learned weights, as shown in Figure 10. (Empirical
evidence suggests that these subsets should be computed by partitioning the range of the
Advisor’s weights, rather than be of equal size.) Under prioritization, the top-ranked subset
votes first, and, if it determines a best action, that becomes the decision. If a subset prefers
more than one action (a tie), however, then only the tied actions are forwarded to the next
subset for consideration, until a decision is made or a tie is broken after the last subset votes.
If the user specifies a level of prioritization, additional testing phases with the same testing
problems are included in every run. For example, if level 3 is specified, ACE will run five
additional testing phases in addition to the ordinary phase: one with 2 subsets for tier 3, one
with 3 subsets, one with a ranked list for tier 3, one with the two best tier 3 Advisors, and one
with the single best tier 3 Advisor. (Note that prioritization of tier 3 is different from Pusher,
because Pusher never uses more than one tier 3 Advisor, whereas if a promoted Advisor fails
to make a single choice, the remaining choices will be forwarded to tier 3.)

Prioritization speeds computation because a decision can often be made without devoting
cycles to the full complement of Advisors. The number of subsets is open to question, however.
In the extreme case, tier 3 effectively becomes a ranked list, and may lose the synergy
among good reasons, which accounts for ACE’s accuracy. (This is another confirmation that
promotion is doomed to failure.) Under prioritization into some (problem class-dependent)
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FIGURE 10. Schematics of ACE’s decision process (a) without prioritization and (b) with prioritization.
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number of subsets, ACE typically reduces its computation time. The most extreme version of
prioritization is to consult only the best variable-ordering heuristic and the best value-ordering
heuristic or simply the best variable-ordering heuristic with lexical value selection.

These results are readily transferable to solvers other than ACE. Our experience with
promotion indicates that a single heuristic, no matter how putatively reliable, will not perform
as well as an ACE-like mix. Our results with Pusher indicate that the folklore is indeed correct,
and that it is possible to learn the deepest error for a class of problems and use it as a cutoff,
after which a single good heuristic (or a random decision) will suffice. Finally, our experience
with prioritization demonstrates that ranked lists of heuristics can be less effective than an
ACE-like mix.

7. KNOWLEDGE REPRESENTATION

ACE has a large collection of problem class files. A problem is represented in ACE as a set
of variables, a domain of possible values for each variable, and a set of binary constraints on
pairs of variables. A binary constraint on variables x and y is represented as a list of acceptable
pairs (a, b), where a is in the domain of x and b is in the domain of y. The representation in
the input file for the problem in Figure 1 would number the variables, rather than use letters:

(TITLE (GRAPH-1 example))
(PARAMS NUMVARS 4 DMAX 5 EXP-DENSE 0.50 EXP-TIGHT 0.32)
(ARCS ((1 2) (1 4) (3 4)))
(ROOT 4)
(VAR 1 VAR-1 NUM (1 2 3))
(VAR 2 VAR-2 NUM (1 2 4 5 6))
(VAR 3 VAR-3 NUM (1 2))
(VAR 4 VAR-4 NUM (1 3))
(CON (1 2) P (= =) ((1 1) (2 2)))
(CON (1 4) P (= =) ((2 1) (3 1) (3 2)))
(CON (3 4) P (= =) ((1 3) (2 1) (2 3)))

During execution, a state represents a partial assignment. In the initial state of a problem,
no variables have values; in the final state of a successful search, the problem is solved and
all the variables have values. A state includes the unassigned variables and their dynamic
domains, the assigned variables and their (temporarily) assigned values, the impossible values
for each unassigned variable (values that have been tried with this partial assignment but found
inconsistent with it), and the number of constraint checks incurred during any digressions that
generated those impossible values. Each state also stores the edges remaining in the dynamic
constraint graph, a pointer to the state immediately prior to the current one during search,
and the results from certain time-consuming computations needed by more than one heuristic
(e.g., how many variables are now assigned values, the legal actions currently available).

For each problem, ACE retains a history of successful decisions, represented as pairs of
the form <s, d> where s is a state, d is the decision ACE for that state. ACE also keeps
a stack of states in which decisions were made. When a value is retracted, the problem’s
history is corrected, so that a solved problem’s history contains only correct decisions. (For
an overconstrained problem, eventually the only retained state is a replica of the initial state
but without any remaining alternatives for some variable.) The stack, in addition, retains the
roots of digressions destined to become training examples for weight learning.

ACE’s useful knowledge records the value and stability of the weights for each Advisor
in each stage. It also includes the risk associated with each Advisor and a distribution of the
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number of steps required to solve the problems in the class. Finally, the deepest error (see
Section 6.6) is recorded as an integer.

7.1. Knowledge about Constraint Solving

A program that learns to solve CSPs should be armed with well-known, empirically
demonstrated retraction methods, inference methods, and heuristics. The algorithms noted
here make ACE complete, that is, ACE could solve any CSP, given enough computational
resources. ACE therefore guarantees feasible, but not necessarily optimal, solutions.

ACE uses chronological backtracking for retraction. If there are as-yet-untried values in
the domain of the most recently selected variable, it replaces the assigned value with another;
otherwise it returns the next most recently selected variable until it identifies one with as-
yet-untried values. Chronological backtracking is a simple but popular retraction method for
CSP solvers.

The user specifies which of ACE’s two inference methods should be used in an experiment
to reduce the variables’ dynamic domains: forward checking or arc consistency. Both methods
are readily understood in the context of the underlying constraint graph, where there is an
edge between variables x and y if and only if there is an explicit constraint between them.
After a value a is assigned to a variable x, forward checking removes from the dynamic
domain of every neighbor y of x any value b such that (a b) is unacceptable to the constraint Q4

on x and y. For example, in Figure 1, if variable A is set to 1, then the values 2, 4, 5, and
6 can be removed from the domain of B. Forward checking is relatively fast, as it performs
at most O(k·maximum-degree) constraint checks after an assignment. A more costly, but
potentially more thorough, method is arc consistency, which continues to reduce, in turn,
the dynamic domains of the neighbors of variables whose domains have just been reduced
by a value assignment. For example, again in Figure 1, if variable D is set to 1, then the
value 1 must be removed from the dynamic domain of A, and in turn, 1 will be removed
from the dynamic domain of B. Arc consistency may reconsider a variable as its neighbors’
domains reduce, so it has complexity O(ek3), where e is the number of edges in the constraint
graph. Neither inference method guarantees that a partial assignment will result in a solution,
but arc consistency often eliminates more values from subsequent consideration. Whichever
inference method ACE employs, it always performs a single arc consistency pass once, before
solving begins.

As described in Section 4, ACE has 21 variable-ordering heuristics (20 in tier 3) and 19
value-ordering heuristics (18 in tier 3), listed in the Appendix. It also has some rudimentary
graph theory knowledge (e.g., efficient algorithms to identify connected, acyclic, and tree-
structured components), and some constraint-solving knowledge (e.g., an algorithm that
computes a backtrack-free, static variable ordering for an arc-consistent tree) (Freuder 1982).

7.2. Languages for Heuristics

Off-the-shelf algorithms (e.g., “minimize the dynamic domain of the variable”), cannot
adapt to a problem class—they perform in the same way no matter how many problems they
encounter. Because both heuristics and search methods have been shown empirically to vary
in their efficacy with the problem class (Borrett, Tsang, and Walsh 1996), very little of this
knowledge can be treated as if it were correct. Furthermore, as Section 6.4 demonstrated,
additional heuristics and methods await discovery.

A programmer may specify a language in which ACE has to learn new heuristics. An
Advisor language consists of a set of terminals, a set of nonterminals, and a regular grammar
defined on them. An Advisor language also has an interpreter that produces comments with
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an expression as if it were an Advisor, and a summary heuristic procedure to combine the
comments thus produced from a specified subset of the language’s expressions. Finally, an
Advisor language maintains information about the status of each of its expressions, as detailed
in Section 5.3.

The simple language that generated the PDFD heuristic in Section 6.4 used the metrics
Domain, Degree, Forward Degree, and Backward Degree. Each expression in this language
is of the form: <metric1, operator, metric2, attitude, stage> where the metrics are distinct,
operator is either product or quotient (sums and differences proved weaker in early testing
and were eliminated), attitude is maximize or minimize, and stage denotes either the first
20% of the variables to be bound, the middle 60%, or the last 20%. Two other languages have
been tested within ACE on a few problem classes. One is a language for value selection,
and the other uses a larger set of variable-ordering metrics. Neither has provided as strong a
result as that described here. For further details on Advisor learning, the interested reader is
referred to Epstein, Gelfand, and Lock (1998).

8. DISCUSSION AND FUTURE WORK

ACE is a long-term collaborative project between constraint-solving experts and a team
working to refine FORR, the cognitive architecture that supports ACE. Together we continue
to identify issues that spur additional research. This section describes the issues that set our
current agenda.

FORR decouples reasoning methods from representation. Although representation can
provide powerful insights into the nature of a problem, there is no reason to require all of a
system’s heuristics to compute from a common representation. The current problem-solving
state, we argue, should provide as many representations as the system’s heuristics require.
(For example, a CSP state can be represented as a labeled graph, as well as sets of variables,
constraints, and domains.) When more than one Advisor employs the same representation,
FORR computes the representation only once and stores it, so that it is readily available to
any other Advisors. In this way, ACE does not credit or blame a representation, only the
Advisors that reference it. Furthermore, if no successful Advisor ever employs a particular
representation, ACE should eventually note that, drop the representation, and redirect the
computational resources once devoted to it. ACE currently computes only metrics that will
be used by Advisors.

FORR also decouples learning methods from the reasoning process. An autonomous
system should acquire only knowledge that it can subsequently apply. ACE’s skill lies not in
the agglomeration of information but in the intelligent application of that knowledge once it
is acquired. ACE applies knowledge only when an Advisor references it. Thus ACE need not
credit or blame a particular learning method, only the Advisors that reference the knowledge it
acquires. Indeed, if no successful Advisor ever employs knowledge derived from a particular
method, then FORR should eventually note that and drop both the method and the knowledge
it produces, again conserving computational resources.

The notion of ACE as a test bed is important. FORR’s modularity makes it straightforward
to simulate other solvers within the ACE framework, and thereby make comparisons with the
same hardware and the same computational overhead. Throughout this paper, data on non-
ACE algorithms was produced by testing in that manner. We argue, however, that methods
that improve ACE are likely to transfer to other solvers. The work on learning new heuristics
is an example of that approach.

For now, ACE is not expected to be the fastest constraint solver available. There are two
primary reasons for this. First, ACE gathers extensive statistics on its behavior during and after
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problem solving, and these computations are time consuming. This is why all comparisons
are done by simulation within ACE. Second, many of the metrics for tier 3 rely on one-ply
lookahead. To support them, ACE computes all the potential children of each current state.
(This is less wasteful than it may seem at first glance, because it caches a variety of computed
values required by the Advisors.) ACE is often more accurate (i.e., makes fewer retractions)
than simple algorithms (e.g., Minimize Domain for variable selection and select values at
random), but it is slower. The price for reasoning correctly appears to be some slowdown.
That motivated the work on Pusher, promotion, and prioritization; the tradeoff between speed
and accuracy continues to be a focus in our current work.

8.1. Hard Problems and Learning

A learning program in a space whose problem difficulty has a heavy-tailed distribution
can be lulled into a false sense of security. Its experience may suggest that it has learned to
solve these problems well, but it may not yet have encountered those whose difficulty lies
on the hard tail. As noted earlier, there are enough challenging problems in a CSP class,
and their range of difficulty is sufficiently broad, to guarantee that eventually the learner
will encounter a problem far more difficult than those it has seen thus far. As a result, we
anticipated, and have experienced, two major issues in resilient learning for problems with a
heavy-tailed distribution of difficulty: making the training set representative of the problem
class, and recovery when a problem is far more challenging than any previously encountered.

The learning algorithm described here is responsive both to the cost of an error and to
the overall current system performance. These techniques are applicable beyond the scope
of this paper. An independent version of DWL (one that ignores whether a decision was for Q5

a variable or a value) is readily constructed. Such an algorithm is applicable in any set of
problem classes where an error can be pinpointed and its cost can be identified.

When ACE has difficulty in solving a problem, there are several likely explanations: the
problem may really be difficult (i.e., from the hard tail of the distribution); ACE may not yet
have learned enough about the problem class; or a tie-breaking decision may have led the
program in the wrong direction. We are currently investigating four possible responses to
such a difficulty:

� There are many CSP inference and retraction methods, each of which has been experi-
mentally observed to curtail search on some problem classes. Other inference methods
(e.g., path consistency) can remove inconsistent values from domains. Other retraction
methods (e.g., backjumping, backmarking) can prevent repeated exploration of doomed
value combinations (Gaschnig 1979; Ginsberg 1993; Prosser 1993; Kondrak and van Beek
1995). Implementation of several of these methods for ACE is now underway. Each of
them, however, incurs additional resource cost with no guarantee of improved perfor-
mance. Our ultimate intention, therefore, is to have ACE learn which inference method
and which retraction method to use, and at what point in the search to use them.

� In early work, we relied on a user-specified step limit to terminate search during learning—
if ACE was having difficulty, after it reached the step limit it abandoned the problem
and went on to the next problem (Epstein and Freuder 2001). Our thesis was that good
solutions would be short, and that those were the solutions from which ACE should learn.
For example, for problems with 30 variables, whose perfect solution would require only
60 steps (30 variable selections and 30 value selections), we would set a step limit of 100
(Epstein et al. 2002). Although this served well at the time, there was a clear tradeoff: a
lower step limit produced training examples from good solutions, but ACE solved fewer
problems and thus had fewer training examples (probably elicited after easier problems)
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from which to learn. As a result, we had to set the step limit experimentally, and vary it with
the class difficulty. As we continue to strengthen ACE and pare its resource requirements,
we now find that we can set an arbitrarily high step limit (currently 10,000) and rarely
reach it. This permits us to learn from more difficult problems and to overcome (to some
extent) the impact of an unlucky tie-breaker.

� Another device we continue to use, although it was not employed in the experiments
described here, is bootstrap learning between classes (Epstein et al. 2002). Because most
of its tier 3 Advisors are constructed as duals, ACE begins with both good heuristics and
antiheuristics, those that give generally poor advice in a problem class. Some problems
are so difficult that ACE solves very few of them during learning, and therefore has few
training examples. Instead, with bootstrap learning, we train ACE initially on a similar
class that is easier (either because κ is not near 1, or because n is much smaller), and
then begin on the more difficult class with the weights learned on the easier one. This
is the device we are currently using to learn quasigroups with holes, a special case of
scheduling problems that can be notoriously difficult. We plan to investigate the merits of
bootstrapping through a sequence of classes, rather than merely two.

� Randomly restarting search (with an arbitrary variable and an arbitrary value for it) is ef-
fective on difficult CSPs (Gomes et al. 2000). That research restarted after four retractions
on a problem, and found 1 million restarts to be an effective method on large quasigroup
problems. The user can specify that ACE restart on a problem with which it is having
difficulty, as measured by the number of retractions during search. This setting can be
merely a counter (e.g., no more than 100 restarts), or should allow for additional search
on each new attempt (e.g., no more than 100 restarts with two more retractions permitted
on each successive attempt). Furthermore, the user can specify that ACE restart an entire
learning phase if it appears to be going badly (e.g., restart if fewer than 10% of the first
20 problems are solved). In addition to random restart, the ACE user may specify other
restart techniques that use ACE’s knowledge to select a likely variable, a likely value, or
both for the first assignment on each restart. Like stage breaks, restart proves effective on
some problem classes (generally the more difficult ones), but requires experimentation to
arrive at an appropriate setting. We plan to have ACE learn appropriate restart parameters
instead.

8.2. Cognitive Orientation

As used here, “cognitively oriented” means that FORR’s reasoning structure emulates
approaches readily observable in human problem solving, highly effective approaches not
always found in traditional AI artifacts. In tier 3, FORR models human experts who simulta-
neously entertain a variety of (imperfect) rationales for taking an action (Crowley and Siegler
1993; Schraagen 1993; Biswas et al. 1995; Ratterman and Epstein 1995; Keim et al. 1999).

A cognitively oriented avenue of current research is fast and frugal reasoning, a paradigm
observed in human problem solving. Under limited time, there exists a tradeoff between the
speed of decision making and the correctness of the decision. When pressed for time, people
may limit their search for information to guide them in the decision process with noncom-
pensatory strategies, those that use a single heuristic to prefer a single option (Gigerenzer
and Goldstein 1996). People appear to work from a collection of cognitive mechanisms for
inference in specific domains (Gigerenzer, Todd, and Group 1999), which includes low-order
perceptual and memory processes, including fast and frugal strategies that may be combined
to account for higher-level mental processes. Preliminary experiments indicate that fast and
frugal reasoning can save computation time in ACE, but the particular variant employed is
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related to problem difficulty (Epstein and Ligorio 2004). We expect to have ACE learn which
variant, if any, to employ during testing.

8.3. Related Work

Because ACE does unsupervised learning through trial and error with delayed rewards,
it qualifies as a reinforcement learner (Sutton and Barto 1998). Ordinarily, reinforcement
learning learns a policy, a mapping from estimated values of repeatedly experienced states
to actions. In learning to solve a class of constraint problems, however, one is unlikely ever
to revisit a state, given the large size of both an individual problem’s search space and the
size of a problem class. Instead, ACE learns a policy that tells it how to act in any state, one
that combines action preferences as expressed by its Advisors’ comments.

FORR offers a variety of features that made it, rather than other well-known architectures,
a good candidate for this work. Because one goal of the ACE project is to export knowledge
to other solvers, the architecture must provide explicit information about the efficacy of its
heuristic procedures. SOAR (Rosenbloom, Newell, and Laird 1991) and Prodigy (Carbonell,
Knoblock, and Minton 1991) do not. ACE is expected to learn from experimentation, which
neither SOAR nor Theo (Mitchell et al. 1991) is intended to do. Theo would also be inap-
propriate because its caching is known to produce very large knowledge bases, which would
be intractable for most CSPs.

STAGGER (Schlimmer and Fisher 1986) was a program that learned new expressions
from its original terms, and is therefore reminiscent of ACE’s ability to learn new heuristics
from its original metrics. STAGGER’s learning, however, was failure-driven, and produced
Boolean classifiers, whereas ACE is success-driven and learns a search control preference
function for a sequence of decisions in a class of problems. STAGGER did supervised
learning, and represented its results as weighted Booleans, while ACE does unsupervised
learning of a weighted linear function. STAGGER also had an initial bias and real valued
attributes; ACE’s initial bias is under construction, and it currently only accepts discrete
values.

Both SAGE.2 (Langley 1985) and ACE learn search control from unsupervised expe-
rience, reinforce decisions on a successful path, gradually introduce new factors, specify a
threshold, and can transfer their abilities to harder problems. SAGE.2, however learns repeat-
edly on the same task, reinforcing repeating symbolic rules, while ACE learns on different
problems in a specified class, reinforcing the originators of correct comments. When SAGE.2
fails, it revises its rules uniformly; when ACE errs, it reduces its weights in proportion to
the size of the error. SAGE.2 learns during search, and compares states, but it lacks ACE’s
random benchmarks. ACE, in contrast, learns only after search and does not compare states.

Most “learning” in CSP programs is mere memorization of no goods, combinations of
variable-value bindings for a single problem that produce an inconsistency (Dechter 2003).
Solnon (2002) used an artificial ant colony to lay trails of pheromones that learn to guide
search . It requires that the number of constraints violated can be evaluated incrementally, and
is therefore problem-specific, rather than problem–class-specific. The only other substantial
effort to learn to solve constraint problems of which we are aware was MULTITAC (Minton
1996). MULTITAC generated Lisp programs that were specialized solvers constructed from
low-level semantic components. A MULTITAC solution was also directed to a class of
problems, but MULTITAC required that the user first represent each problem in first-order
logic. MULTITAC processed only 10 training instances and used a hill-climbing beam search
through the plausible control rules it generated, to produce efficient constraint-checking code
and select appropriate data structures. Unlike ACE, its resultant algorithms were tie-breaking
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rather than collaborative, and its structure lacked the fluidity and flexibility of FORR. It had,
for example, no stages, no voting, and no discounting.

ACE is not, in the immediate future, the answer to all CSP researchers’ needs. In particular,
it currently handles only unary and binary constraints, it does not do local search (but is,
therefore, complete), it does not do constraint optimization or soft constraints, and it has not
been applied to SAT problems.

8.4. More Work in Progress

The demonstration that ACE can learn to solve hard problems began in Section 6 with
what we call “vanilla ACE,” one without the benefits we have demonstrated later in this paper
from stages, prioritization, pushing, learning to stability, and learning new Advisors. Each of
these has in turn been shown to improve performance. The obvious course, therefore, would
be to combine them all, with the expectation that ACE would perform even better. That is not,
however, what happens. For example, multiple stages actually impair ACE’s performance on
some classes of problems, and prioritization does not always improve it. Instead, there appears
to be, as one might expect in a problem area this ornery, a level no solver, however clever,
surpasses. (Indeed, with NP-hard lurking, this should come as no surprise.) ACE provides a
still-growing test bed of reasoning methods for CSPs. We are currently experimenting with
a more adaptive framework that, before and after the learning phase, but prior to testing,
determines on its own which enhancements are productive for a particular problem class.

In addition to the efforts described earlier, we intend to expand ACE’s repertoire of prob-
lem classes and Advisor languages. We have under development several new weight-learning
algorithms, more sophisticated versions of DWL. (Clearly weight learning is essential to
ACE’s improved performance, because only with weights is prioritization possible.) Work
is now underway to have ACE itself learn the number and location of its stage breaks au-
tomatically. The selection of an Advisor to push is clearly problem class-dependent; work
is in progress to have ACE learn what to push in addition to when to push. We have begun
work to jumpstart learning with initial weight biases estimated by ACE for a given problem
class as a preliminary phase to an experiment, before the runs begin. Also, although ACE is
meant to support constraint solvers rather than replace them, faster processing will expedite
discovery. Thus we continue to seek methods that accelerate ACE, with the expectation that,
as PDFD did, they will accelerate other solvers too.

Finally, we have also postulated a set of generally-applicable meta-heuristics (knowledge
about heuristics) intended for mixture of experts systems such as ACE (Epstein 2004).
These include accuracy, stability, utility, influence, novelty, acuity, involvement, and risk.
ACE currently measures and monitors all these meta-heuristics for each of its Advisors. As
described here, ACE currently uses accuracy, stability, and risk in its weight learning. Work
is underway to apply the others in a variety of ways, including learning when to prioritize and
into how many classes. Although a FORR-based program is intended to tolerate dependent
Advisors, multiple Advisors that compute the same, or nearly the same, measure, can distract
the weight learner. As ACE’s Advisor list grows, we therefore intend to have FORR apply
these meta-heuristics to sets of dependent Advisors and select the best from among them.

9. CONCLUSIONS

Although a wide variety of problems can be cast as constraint problems and solved within
ACE, the long-term goal of the ACE project is to understand how cognitive architectures can
be used to build advanced programming tools. Many of the devices described here for ACE
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are actually provided by FORR, including the decision-making structure, weight learning to
stability, stages, bootstrap learning, learning heuristics from a language for them, promotion,
prioritization, and the construction and monitoring of experiments.

ACE’s current achievements include its ability to learn to solve hard problems, to learn
new heuristics, and to transfer knowledge to harder problem classes. ACE also knows when
to stop learning, and can learn when it is relatively safe to reason less.

Real-world problems, and those that imitate them, are less responsive to off-the-shelf
algorithms, which do not adapt to the problems they confront. ACE’s results on geometric
and small world problems are intended to be more realistic than merely random ones.

ACE can currently support constraint programmers in a variety of ways. It provides inci-
sive results on popular heuristics applied to particular problem classes, and it can characterize
a problem class by the heuristics to which it is (and is not) responsive. These include the pro-
portion of time devoted to inference, to retraction, and to decision making, as well as the depth
in the search tree at which errors arose, and how severe those errors were. ACE publishes its
discoveries of effective combinations of heuristics. Its results are readily exportable, and its
meta-knowledge about heuristics should be particularly useful. It also permits researchers to
test new heuristics and new combinations of heuristics on a broad variety of problem classes.
ACE is envisioned as a research partner, and is proving to be an effective one.
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APPENDIX

Other than those learned during problem solving, ACE begins with a set of Advisors
selected from the following. “Any” here denotes either random or lexical selection, as deter-
mined by the user, and is applied uniformly for all Advisors. The following list is restricted to
Advisors used to generate results cited in this paper. The list is continually evolving, however.

Tier 1 (in Order)

Victory. When only a single variable has no assigned value and has been selected,
Victory comments in favor of any value in the dynamic domain of that variable.

Degree Zero. When a variable is to be selected next, Degree Zero vetoes any variable
whose dynamic degree is zero. This Advisor is not used if Later is.

Later. When a variable is to be selected next, Later vetoes any variable whose forward
degree is less than its dynamic domain. This Advisor is intended only for graph coloring,
and is not used if Degree Zero is.
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Unique Value. When a variable is to be selected next, Unique Value forces the selection
of any variable whose dynamic domain contains exactly one value.

Pusher. When a variable is to be selected next, Pusher uses only the single best tier
3 Advisor to make a decision. If the Advisor does not comment, or if no variable-selection
Advisor survives into testing, Pusher selects any variable. See Section 6.6 for further details.

Tier 3 (Variable Selection)

Min/Max Static Degree. Supports variables in increasing/decreasing order of their
static (in the original constraint graph) degree.

Min/Max Domain. Supports variables in increasing/decreasing order of their dynamic
domain size. Smaller domains are likely to fail sooner.

Min/Max Domain/Degree. Supports variables in increasing/decreasing order of the
ratio of their dynamic domain size to their static degree. (Bessière and Régin 1996)

Min/Max Backward Degree. Supports variables in increasing/decreasing order of the
number of their valued neighbors.

Min/Max Forward Degree. Supports variables in increasing/decreasing order of their
dynamic degree (number of unvalued neighbors).

Min/Max Value Pairs. Supports variables in increasing/decreasing order of the number
of pairs of values with their neighbors still supported by the current partial assignment
(Kiziltan, Flener, and Hnich 2001).

Min/Max Static Connected Edges. Orders the edges in the original constraint
graph descendingly, by the sum of the degrees of their vertices. Supports variables in
increasing/decreasing order of their incidence on these edges, with preference for the higher-
degree vertex.

Min/Max Static Less Connected Edges. Orders the edges in the original constraint
graph ascendingly, by the sum of the degrees of their vertices. Supports variables in
increasing/decreasing order of their incidence on these edges, with preference for the higher-
degree vertex.

Min/Max Dynamic Connected Edges. Orders the edges in the dynamic constraint
graph descendingly, by the sum of the degrees of their vertices. Supports variables in
increasing/decreasing order of their incidence on these edges, with preference for the higher-
degree vertex.

Min/Max Dynamic Less Connected Edges. Orders the edges in the dynamic con-
straint graph ascendingly, by the sum of the degrees of their vertices. Supports variables
in increasing/decreasing order of their incidence on these edges, with preference for the
higher-degree vertex.

Tier 3 (Value Selection)

These Advisors address the assignment of a value to a variable that has already been
selected.

Min/Max Common Value. Supports values that have been assigned less/more often in
the partial assignment.
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Min/Max Options Value. Supports values associated with the least/most values for the
neighbors of the variable.

Min/Max Static Conflicts Value. Minimizes/maximizes based on the number of values
that would be supported in the static domains of the unvalued neighbors of the variable (Frost
and Dechter 1995).

The following two pairs of Advisors address the domain size of the future variables after
application of an inference method.

Min/Max Small Domain Value. Minimizes/maximizes the minimum domain size (Frost
and Dechter 1995).

Min/Max Product Domain Value. Minimizes/maximizes the product of the domain
sizes (Geelen 1992).

The following two pairs of Advisors base their comments on the values supported in the
dynamic domains of the neighbors of the variable after application of an inference method.
Recall that an inference method considers ordered pairs of values for edge labels; those are
distinguished here from the individual values that appear in those pairs.

Min/Max Secondary Pairs Value. Minimizes/maximizes the number of pairs of values.

Min/Max Secondary Value. Minimizes/maximizes the number of distinct values.
The following two pairs of Advisors base their comments on the minimum domain size

of the future variables after the application of an inference method (Frost and Dechter 1995).

Min/Max Weighted Domain Score Value. Minimizes/maximizes domain size, weighted
by the number of future variables with domains of that size.

Min/Max Domain Score Value. Minimizes/maximizes the largest domain, treating the
number of future variables with domains of that size as an exponent.



QUERIES

Q1 Au: Please check that the change retains the intended sense.

Q2 Au: Please check this usage—‘ . . . consulted and the comment.

Q3 Au: Please confirm whether there is an apostrophe or prime after ACE.

Q4 Au: Please check this usage—‘every neighbor y of x any value b’.

Q5 Au: The sentence—‘ These techniques...’ is not clear. Please check.

Q6 Au: Please provide location of the conference.

Q7 Au: Please provide location for the symposium.

Q8 Au: Please provide location of the conference.

Q9 Au: Please provide location of the conference.

Q10 Au: Please confirm the page range in this reference.

Q11 Au: Please provide location of the conference.

Q12 Au: Please provide location of the conference.
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