
Software Design Lecture Notes

The GCC Compilers

Prof. Stewart Weiss

The GCC Compilers

Preface

If all you really want to know is how to compile your C or C++ program using GCC, and you don't have
the time or interest in understanding what you're doing or what GCC is, you can skip most of these notes
and cut to the chase by jumping to the examples in Section 6. I think you will be better o� if you take the
time to read the whole thing, since I believe that when you understand what something is, you are better
able to �gure out how to use it.

If you have never used GCC, or if you have used it without really knowing what you did, (because you were
pretty much using it by rote), then you should read this. If you think you do understand GCC and do not
use it by rote, you may still bene�t from reading this; you might learn something anyway. Because I believe
in the importance of historical context, I begin with a brief history of GCC.

1 Brief History

Richard Stallman started the GNU Project in 1984 with the purpose of creating a free, Unix-like operating
system. His motivation was to promote freedom and cooperation among users and programmers. Since
Unix requires a C compiler and there were no free C compilers at the time, the GNU Project had to build
a C compiler from the ground up. The Free Software Foundation was a non-pro�t organization created to
support the work of the GNU Project.

GCC was �rst released in 1987. This was a signi�cant breakthrough, being the �rst portable ANSI C
optimizing compiler released as free software. Since that time GCC has become one of the most important
tools in the development of free software.

In 1992, it was revised and released as GCC 2.0, with the added feature of a C++ compiler. It was revised
again in 1997, with improved optimization and C++ support. These features became widely available in the
3.0 release of GCC in 2001.

2 Languages Supported by GCC

GCC stands for �GNU Compiler Collection�. GCC is an integrated collection of compilers for several major
programming languages, which as of this writing are C, C++, Objective-C, Java, FORTRAN, and Ada.
The GNU compilers all generate machine code, not higher-level language code which is then translated via
another compiler.

3 Language Standards Supported by GCC

For the most part, GCC supports the major standards and provides the ability to turn them on or o�. GCC
itself provides features for languages like C and C++ that deviate from certain standards, but turning on the
appropriate compiler options will make it check programs against the standards. The section below entitled
Consult the manual for details.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 1

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes

The GCC Compilers

Prof. Stewart Weiss

4 A Bit About the Compile and Link Process

Suppose that you have written a very simple C program such as the following

1 : #inc lude <s td i o . h>
2 :
3 : i n t main ()
4 : {
5 : p r i n t f ("He l lo world\n") ;
6 : r e turn 0 ;
7 : }

and placed it in a �le named helloworld.c. You may have been told that you need that �rst line, which is
the #include directive, #include <stdio.h>, but you may not really know why it is there. The reason is
that the printf() function is declared in the header �le stdio.h and in order for the compiler to check that
you are calling it correctly in line 5, it needs to compare the declaration of the printf() function with its
use. The compiler just needs to check things such as the number of parameters, their types, and the return
value of the function.

The way this is done is by copying the entire header �le into the program before the compiler runs. The
#include directive literally copies the entire �le, stdio.h, into your program starting at line 1. This is done
by a program called the C preprocessor. Once the header �le is physically part of your program, the compiler
will run and will be able to validate the call to printf() by comparing it to the declaration that it read in
an earlier line in the modi�ed �le.

The header �le does not contain the de�nition of the printf() function, i.e., its implementation. That is
contained in the C Standard I/O Library. The compiler is not able to create the machine instructions that
will cause the printf() function to run, because it does not know �where� the printf() implementation is;
it cannot create a �call� to this function. Instead, the compiler places a notation in the executable �le that
says, more or less, �the call to printf() must be resolved by the linker.�

The linker is a separate program that runs after the compiler. It looks at all of the unresolved symbols in the
program, such as printf(), and tries to resolve them by looking up their locations in the software libraries
that the program needs. In this case, the linker needs to look up in the C Standard I/O Library the location
of the printf() function, so that it can patch the code to make a call to it. The C Standard I/O Library
is special because it is used in almost every C program, and therefore many C implementations include it
within the C runtime library. This makes it possible for the linker to �nd it easily.

The same discussion would apply if you wrote the above program in C++ as in

1 : #inc lude <iostream>
2 :
3 : i n t main ()
4 : {
5 : s td : : cout << "Hel lo world\n " ;
6 : r e turn 0 ;
7 : }

only instead of using the stdio.h header �le, it would use the iostream header �le, and the iostream library
in C++ instead of the C Standard I/O Library.

In summary, a header �le contains declarations that the compiler needs, but not implementations. The
corresponding library �le has those. The compiler needs the header �les but not the libraries; the linker
needs the libraries, not the header �les.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 2

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes

The GCC Compilers

Prof. Stewart Weiss

5 Command Options and Control

From this point forward, lowercase gcc will refer to the executable program name, i.e., what you type to run
the GCC compiler.

5.1 Options and File Extensions Controlling the Kind of Output

When you run gcc, it usually performs preprocessing, compiling, assembly and linking. There are options to
control which of these steps are performed. gcc can also look at the �le extension for guidance as to which
compiler to use and what kind of output to generate. For example, a �le ending in .c is assumed to be C
source code, and �les ending in either .cc, .cpp, .c++, .C , and .cxx are taken to be C++ source code.
(There are other extensions that are also taken to imply C++ source code.) You should consult the manual
for other extensions and languages. The following options are either very useful or enlightening.

-c Compile or assemble the source �les, but do not link. The linking stage simply is not done.
The ultimate output is in the form of an object �le for each source �le. By default, the
object �le name for a source �le is made by replacing the su�x `.c', `.i', `.s', etc., with
`.o'. E.g.,

gcc �c myprog.c

produces myprog.o.

-s Stop after the stage of compilation proper; do not assemble. The output is in the form of
an assembler code �le for each non-assembler input �le speci�ed. By default, the assembler
�le name for a source �le is made by replacing the su�x `.c', `.i', etc., with `.s'. It is
unlikely that you will need to do this, but it is educational to look at the output of the
compiler, which is in assembly language.

-E Stop after the preprocessing stage; do not run the compiler proper. The output is in the
form of preprocessed source code, which is sent to the standard output. E.g.,

gcc �E myprog.c > myprog.i

This is also an educational exercise � you can see for yourself what the preprocessor does
to your source code, to get a better understanding of how to use it.

-o file Place output in �le file . This applies regardless of whatever sort of output is being
produced, whether it is an executable �le, an object �le, an assembler �le or preprocessed
C code. Usually you use this to name your executable. E.g.,

gcc �o myprog myprog.c

-v Print (on standard error output) the commands executed to run the stages of compilation.
Also print the version number of the compiler driver program and of the preprocessor and
the compiler proper.

--help Print (on the standard output) a description of the command line options understood by
gcc.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 3

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes

The GCC Compilers

Prof. Stewart Weiss

5.2 Compiling C++ Programs

gcc comes with a compiler named g++ that speci�cally compiles C++ programs, regardless of the �le
extension. Sometimes you need to use the C++ compiler even though the �le extension is not a C++
extension; in this case you need to use g++.

5.3 Options that Control the C Dialect

By �dialect� is meant a speci�c collection of features of C. For example, the ANSI standard known as ISO90
C is a dialect of C. The full set of features supported by gcc is much larger than the ANSI standard, and
this is also a dialect. Another dialect is obtained by adding GNU extensions to the ANSI ISO C90 standard.
You can selectively remove features from the full GNU set of extensions. The basic options, however, are:

-ansi In C mode, support all ISO C90 programs. In C++ mode, remove GNU
extensions that con�ict with ISO C++. This turns o� certain features of gcc that
are incompatible with ISO C90 (when compiling C code), or of standard C++
(when compiling C++ code).
For example, the getline() function is a GNU extension to C. It is not in ANSI C.
If your program myprog.c contains its own getline() function then if you compile
with the line

gcc myprog.c

you will get the error

temp4.c:4: error: conflicting types for `getline'

but if you use

gcc -ansi myprog.c

the GNU extensions will be disabled, and there will be no type con�ict.

-std= When followed by a speci�c dialect designating string such as `c90' or `gnu9x', it
speci�es that dialect.

-fno-... There are many options that begin with �fno- and are followed by a string that
represents some feature to disable. The 'no' means 'turn o�'. Consult the manual.

5.4 Options that Control Warnings

Warnings are diagnostic messages about constructions that are not errors, but are often associated with
errors. For example, when a variable is declared but never used in a program, it is possible that the
programmer overlooked something, so the compiler could issue a warning when it �nds such a construction.
gcc allows you to suppress certain warnings and request others. Some of the more common options are listed
below.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 4

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes

The GCC Compilers

Prof. Stewart Weiss

-w Inhibit all warning messages.

-Wall Enable all warning messages (recommended for all development work).

-Wextra Enable warnings that are not checked by -Wall. For example, comparing an
unsigned int variable against -1 suggests that you forgot that the variable was
unsigned.

5.5 Options For Debugging

-g This produces debugging information in the operating system's native format.
GDB can work with this debugging information. On most systems that use stabs
format, `-g' enables use of extra debugging information that only GDB can use;
this extra information makes debugging work better in GDB but will probably
make other debuggers crash or refuse to read the program. E.g.,

gcc -g -o myprog myprog.c

Once you have compiled a program with debugging information, you can run it under the control of the
debugger. Of course you have to learn how to use the debugger, gdb, from the command line, or from within
a GUI-based SDK that uses it as the underlying debugger.

5.6 Options Controlling the Preprocessor

Of course you are aware of the fact that when your program is compiled, the very �rst step that the compiler
takes is to run the preprocessor, which processes all of the preprocessor directives, those lines that begin with
the pound sign '#'. There are options that control how the preprocessor behaves, and these are important
to know and understand. The most important are (1) how to de�ne symbols on the command line, and (2)
how to tell the preprocessor where to look for include-�les.

-D name This prede�nes name as a macro symbol, with the value 1, or true if you want
to think of it that way.

-D name=definition The contents of de�nition are tokenized and processed as if they appeared
during translation phase three in a `#define' directive. E.g.,

gcc -D testvalue=6 -o myprog myprog.c

is the same as if you had placed

#define testvalue 6

in myprog.c

If you are invoking the preprocessor from a shell or shell-like program you need to use the shell's quoting
syntax to protect characters such as spaces that have a meaning in the shell syntax. For example,

gcc -D 'introduction=AArgh$#^*!!' -o myprog myprog.c

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 5

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes

The GCC Compilers

Prof. Stewart Weiss

would protect the meta-characters in AArgh$#^*!! from the shell, so that introduction contains that string
exactly.

-U name Cancel any previous de�nition of name, either built in or provided with a `-D'
option.

-undef Do not prede�ne any system-speci�c or gcc-speci�c macros. The standard
prede�ned macros remain de�ned.

Any de�nitions or unde�nitions in the program �les override de�nitions or unde�nitions you make on the
command line. Thus, if you de�ne a symbol on the command line but within the program you undef it, it
will be undef-ed from that point forward.

5.7 Options for Linking

When gcc �nds unresolved symbols in your program, it has to resolve them by searching in library �les. You
specify nonstandard libraries using the following option.

-llibrary

-l library

Search the library named library when linking. (The second alternative with the
library as a separate argument is only for POSIX compliance and is not
recommended.) It makes a di�erence where in the command you write this option; the
linker searches and processes libraries and object �les in the order they are speci�ed.
IMPORTANT: If your program references the symbol supersort and that symbol is
de�ned in the library libgreatstuff.a, then your command line would have to be

gcc -o myprog myprog.c �lgreatstuff

because gcc does not know what it has to look for until it reads myprog.c's unresolved
symbol list, and so it is only after seeing myprog.c that it will search for the symbol
supersort. If you reverse the two words on the command line, you will get a linker
error.
Note that the name you supply to -l is not the full library name, but the name with
the 'lib' and the '.a' removed.

5.8 Options to Control Directory Search

-I dir Add the directory dir to the list of directories to be searched for header �les.
Directories named by `-I' are searched before the standard system
include-directories. If the directory dir is a standard system include directory,
the option is ignored to ensure that the default search order for system directories
and the special treatment of system headers are not defeated.
It does not matter whether there is space between the I and the directory name.

The -I option is important. It is the way to tell gcc that an included header �le is not in any of the standard
places in which it looks. For example, suppose that your program needs the header �le utilities.h, which
is in the directory ~/my_includes. The program contains the line

#include �utilities.h�

Your command line must contain �-I ~/my_includes� otherwise gcc will report that it cannot �nd the �le
utilities.h.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 6

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes

The GCC Compilers

Prof. Stewart Weiss

The -I option controls where gcc looks for header �les. It does not tell gcc where to look for libraries. When
gcc links your program, it has to �nd all library modules that your program uses. If you are using libraries
that are not in gcc's library search path, then you must tell it on the command line to search the containing
directories. The -L option does this:

-L dir Add dir to gcc's search path for libraries.

For example, suppose that the program myprog.c makes a call to a function named log_error() that is
declared in the my_utilities.h header �le and is de�ned in the library libutilities.a located in the
directory ~/my_libs. You could write

gcc -o myprog myprog.c -I ~/my_includes -lutilities -L ~/my_libs

so that gcc looks in the my_libs directory for the �le. Alternatively, you could write

gcc -o myprog myprog.c -I ~/my_includes -l ~/my_libs/libutilities.a

which is equivalent.

5.9 Environment Variables A�ecting GCC

Certain environment variables change the way gcc behaves. Initially the ones of some importance are the
variables that tell it where to search for included �les, where to search for libraries, and where to search for
dynamically loaded libraries. If you are writing programs that are internationalized and you need to make
sure that locale information is speci�ed, you will also need to set some environment variables. The variables
of interest are therefore

C_INCLUDE_PATH A colon-separated list of directories in which to look for include �les for C
programs.

CPLUS_INCLUDE_PATH A colon-separated list of directories in which to look for include �les for C++
programs.

LIBRARY_PATH A colon-separated list of directories that the linker uses to look for static libraries.

LD_LIBRARY_PATH A colon-separated list of directories that the linking loader uses to look for
dynamic libraries.

LANG A variable that controls the locale information used when the compiler is parsing
strings and comments in the program.

6 Examples

Here is a collection of examples to demonstrate how to do the typical tasks. If you did not read about
the supported languages in Section 2 above, then make a note to yourself that GCC will accept C++
programs with any of the extensions .cc, .cpp, .cxx, .c++, and .C. I will use .cpp extensions to denote
C++ programs. In all cases, I have used the -Wall option to enable all warnings. If you learn a bit about
using the GDB debugger, then you would be wise to include the -g option as well.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 7

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes

The GCC Compilers

Prof. Stewart Weiss

Single Source File Programs

1. To compile a program entirely contained in a single �le named fudge.c, putting the executable code
into a �le named fudge:

gcc -Wall �o fudge fudge.c

2. To compile the C++ program fudge.cpp putting the executable code into fudge:

g++ -Wall -o fudge fudge.cpp

3. If you are really in a hurry to compile fudge.cpp and you don't even have the time to give the
executable a name, just type:

g++ fudge.cpp

In this case, g++ will place the executable in a �le named a.out, overwriting any other a.out that
existed in your current working directory. Other than sheer laziness, the only reason to do this is to
check quickly if the program compiles.

Multi-Source File Programs

1. If you have a program distributed among the �les nuts.c, fudge.c, and ice_cream.c, each of which
has a corresponding header �le, nuts.h, fudge.h, and ice_cream.h, all of which are included in the
main program, sundae.c, then enter the following command to create the sundae executable:

gcc -Wall �o sundae nuts.c fudge.c ice_cream.c sundae.c

Whereas you may care whether the nuts precede the fudge or the ice cream in your sundae, gcc's linker
does not care. gcc will be just as happy if you write

gcc �o sundae sundae.c fudge.c ice_cream.c nuts.c

or any other rearrangement of the source code �le names.

2. Suppose that you modi�ed the nuts.c �le (maybe you're using walnuts instead of pecans now). If you
type the entire line written above, you will be recompiling every other �le needlessly. It is much faster
and more e�cient to compile each of the source code �les separately. This is a multi-step procedure:

gcc �c nuts.c fudge.c ice_cream.c sundae.c

gcc �o sundae nuts.o fudge.o ice_cream.o sundae.o

The �rst line produces object �les, i.e. .o �les, for each .c �le. Thus, gcc will create nuts.o, fudge.o,
ice_cream.o, and sundae.o. The second line implicitly invokes the linker to link all of these object
�les together and produce the executable, sundae. It does not matter in which order you write the
object �les on the line.

The linker also links any libraries that the program requires into the executable (provided that it can
�nd them; please read Section 5.7, Options for Linking, and Section 5.8, Options to Control Directory
Search, to better understand.) Now, if you change nuts.c all you have to do is (1) recompile nuts.c:

gcc -c nuts.c

and (2) re-link it using the second line:

gcc �o sundae nuts.o fudge.o ice_cream.o sundae.o

Linking is usually faster than compiling, so this will save you time.

3. If you do this often enough you will discover that it is a drag to have to keep re-typing the same
commands over and over. This is why the make program and Make�les were invented. But that is
another lesson.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 8

http://creativecommons.org/licenses/by-sa/4.0/

	Brief History
	Languages Supported by GCC
	Language Standards Supported by GCC
	A Bit About the Compile and Link Process
	Command Options and Control
	Options and File Extensions Controlling the Kind of Output
	Compiling C++ Programs
	Options that Control the C Dialect
	Options that Control Warnings
	Options For Debugging
	Options Controlling the Preprocessor
	Options for Linking
	Options to Control Directory Search
	Environment Variables Affecting GCC

	Examples

