
Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

Namespaces, Structures and Classes

Namespaces

A namespace is a collection of name declarations and/or de�nitions. Your program's interaction with
namespaces so far has been limited to using them via the using directive , as in

#include <iostream>

using namespace std;

The reason that a program with a line like

cout <�< �Hello world.�;

fails to compile unless the using namespace std directive precedes this statement is that the name cout,
de�ned in the header �le <iostream> has been placed into the namespace std within that header �le and
is unknown outside of that namespace. A namespace de�nes its own scope and the only way to refer to the
members of that namespace outside of it are either to

• put a using namespace directive into the program before the point at which you want to refer to those
members, or

• precede each member's name with explicit scope resolution .

The former is what you've done so far, but you have also seen that instead of using the namespace in the
program you can write something like

std::cout <�< �Hello world�;

which tells the compiler to use the name cout de�ned in the namespace std. The �::� is called the scope
resolution operator . The name on the left of it is the name of a scope region such as a namespace, and
the name on the right is a member of that scope region. The construct std::cout is how you refer to the
cout member of the namespace std.

All of the declarations that you write in a program have scope of one form or another. Recall that block
scope is the scope that extends from a point of a declaration within a block to the end of that block, and
that �le scope is the region of program text from the point of a declaration that is not in any block until the
end of the �le containing that declaration. All of the names that have �le scope in your program actually
belong to an unnamed namespace called the global namespace. This does not mean that the namespace is
named global! It has no name, but we call it the global namespace.

You can create namespaces of your own. To create a namespace with the name spacetime for example, you
would write

namespace spacetime

{

/* declarations and definitions here */

}

The keyword namespace introduces the namespace de�nition. The name of the namespace follows, in this
case spacetime, and then what looks like a block: a pair of curly braces with whatever declarations and/or
de�nitions you want to place in them. Notice though that there is no semicolon after the namespace de�nition.
It is not required.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 1

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

Example

namespace spacet ime
{

void pr in tda t e (ostream & out , i n t y , i n t m, i n t d)
{

out << m <, "/" << d <, "/" << y ;
}

void p r i n tpo in t (ostream & out , double x , double y , double z) ;
}

If you then put a directive

using namespace spacetime;

in your program, you will be able to call the function printdate() by writing just the function name itself,
but if you do not put this using directive into the program, then you must qualify the name printdata()

with the name of its namespace, i.e., you must call spacetime::printdata() to use it:

spacetime::printdata(2012, 11, 6);

The printpoint() function is declared in the namespace but its de�nition is not contained in it. Suppose
for some reason that we wanted to write the de�nition of printpoint() outside of the namespace. (Imagine
that the namespace has prototypes of functions and only prototypes, and di�erent programmers need to
write di�erent implementations of these functions in their own code.) Then you would have to write the
function de�nition as follows:

void spacetime::printpoint(ostream & out, double x, double y, double z)

{

/* code here */

}

To summarize, a namespace is a collection of names. To refer to any of those names outside of the namespace
itself, you must either insert a using namespace directive before the �rst use of any of those names, or you
must qualify those names with the namespace name followed by the scope resolution operator.

Structures

Suppose that we would like to store a student's academic record for processing. It will have string data
such as names and id numbers, numeric data such as GPA and the number of credits earned, the courses
the student has taken so far, the grades in each, and so on. You could create a separate variable for each
data item, and that might be �ne for a program that manages one student record, but if you can imagine a
program that reads in a list of these records from a text �le, perhaps stored one record per line, and has to
store each record separately, then you should realize that putting the separate parts of the student records in
separate variables is a messy solution. Clearly the data types you have learned about so far, such as strings,
scalar types, and arrays, cannot be used very easily to store this complex set of data.

One solution in C and C++ is a type known as a structure . A structure is a heterogeneous collection

of data. It can store data of di�erent types, each with its own name. A structure is introduced with the
struct keyword, as in the example below.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 2

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

s t r u c t User
{

s t r i n g f i r s tname ;
s t r i n g lastname ;
i n t s co r e ;

} ;

This de�nes a new data type named User that has three members. Each member is a variable that can
be assigned data independently of the other members. The �rst two members of the structure are string

variables named firstname and lastname. The third member is an int named score.

The syntax of the structure de�nition is

struct structurename { list_of_member_declarations };

where structurename is a valid identi�er and list_of_member_declarations is a list of variable declara-
tions. The structure de�nition must be terminated by a semicolon.

The structure does not have to contain di�erent types of data. Here is a useful structure whose members
are all integers:

s t r u c t Date
{

i n t year ;
i n t month ;
i n t day ;

} ;

Because a structure de�nition de�nes a type and not a variable, it can be placed into the global scope so
that all functions have access to the de�nition.

Structures can be initialized when they are declared using the same form of initialization as arrays:

User default_user = {"Jody", "Jones", 0 };

The values are assigned to the members in the same order as they appear in the declaration. I.e.., it
is positional assignment . Variables whose type is a structure are declared the same way as ordinary
variables:

User current_user;

User default_user;

Having declared a variable of the given structure type, the individual members of that variable are accessed
using the �dot operator�. The syntax is

variable_name.member_name

as in

cin >�> current_user.firstname;

cin >�> current_user.lastname;

current_user.score = 0;

Two variables of the same structure type can be assigned one to the other, and the entire structure is copied
from one to the other:

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 3

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

current_user = default_user;

is the same as

current_user.firstname = default_user.firstname;

current_user.lastname = default_user.lastname;

current_user.score = default_user.score = 0;

Suppose a text �le has lines consisting of a �rst name, last name, and a score, such as

Elmer Fudd 82

A program fragment like the following could be used to read the data from the �le so that it can be sorted
or processed in other ways.

i n t main ()
{

User scoredata [MAXUSERS] ; // an array o f 100 User s t r u c t u r e s
User temp ; // temp va r i ab l e f o r input
f s t ream f i n ;
i n t l ength = 0 ;

/∗ open a f i l e and a s s o c i a t e with the i f s t r e am f i n ∗/
/∗ sk ipp ing t h i s part . . . ∗/

f i n >> temp . f i r s tname >> temp . lastname >> temp . s co r e ;
whi l e (l ength < MAXUSERS && ! f i n . e o f ()) {

scoredata [l ength] = temp ; // s t ruc t−to−s t r u c t ass ignment ! !
l ength++;
f i n >> temp . f i r s tname >> temp . lastname >> temp . s co r e ;

}

/∗ now proce s s the data ∗/
}

The following function could be used to sort the data by score in ascending order. It uses a simple selection
sort.

void sortByScore (User l i s t [] , i n t l en)
{

i n t sma l l e s t ; // index o f sma l l e s t item in so r t ed part
i n t f i r s t ; // index o f f i r s t item in unsorted part
User temp ;

f o r (f i r s t = 0 ; f i r s t < len −1; f i r s t++) {
// f i nd index o f sma l l e s t element in range f i r s t to N−1
sma l l e s t = f i r s t ;
f o r (i n t k = f i r s t +1; k <= len −1; k++)

i f (l i s t [k] . s c o r e < l i s t [sma l l e s t] . s c o r e)
sma l l e s t = k ;

temp = l i s t [sma l l e s t] ;
l i s t [sma l l e s t] = l i s t [f i r s t] ;
l i s t [f i r s t] = temp ;

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 4

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

}

}

Structures can contain other structures. There is no restriction on the type of the members of a structure.
They can contain arrays, structures, arrays of structures, and so on.

Example:

s t r u c t Date
{

unsigned i n t year ;
unsigned i n t month ;
unsigned i n t day ;

} ;

s t r u c t User
{

s t r i n g f i r s tname ;
s t r i n g lastname ;
i n t s c o r e s [5] ;
Date birthday ;

} ;

Note: If an array is a member of a structure, it should be declared with constant size.

To access the members of a structure that is a member of another structure, you need the dot operator
twice. The following example illustrates how the array elements and substructure members are accessed.
This function reads from an input stream into a call by reference parameter of type User, assuming the data
is stored in the stream in the order

firstname lastname birthmonth birthday birthyear score1 score 2 score3 score4 score5

void get_one_record (i s t ream & instream ,
User & record)

{
instream >> record . f i r s tname >> record . lastname ;
instream >> record . b i r thday . month

>> record . b i r thday . day
>> record . b i r thday . year ;

f o r (i n t i = 0 ; i < 5 ; i++)
instream >> record . s c o r e s [i] ;

}

A program fragment to read a �le of such records into an array of User structures would look like the
following:

i n t main ()
{

User scoredata [MAXUSERS] ;
User temp ;
f s t ream f i n ;
i n t l ength = 0 ;

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 5

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

/∗ open a f i l e and a s s o c i a t e with the i f s t r e am f i n ∗/
/∗ sk ipp ing t h i s part . . . ∗/

// This code l ook s the same as read ing a s i n g l e va lue . The d e t a i l s
// are hidden in the func t i on c a l l s .
get_one_record (f in , temp) ;
whi l e (l ength < MAXUSERS && ! f i n . e o f ()) {

scoredata [l ength] = temp ; // s t ruc t−to−s t r u c t ass ignment ! !
l ength++;
get_one_record (f in , temp) ;

}

/∗ now proce s s the data ∗/

}

This program fragment demonstrates a subtle point. Although you cannot assign one array to another, as
in this code fragment:

int a[10]={0}, b[10];

b = a;

because it is a syntax error, you can assign structures containing arrays to each other, as in this fragment:

struct S {

int list[10]

};

S a, b;

for (int i = 0; i < 10; i++)

a.list[i] = i;

b = a;

and it will do a copy of the entire a structure to the entire b structure including all elements of their arrays.
In the listing above, the variable temp is assigned to scoredata[length] and this is a structure to structure
assignment of a structure type containing an array.

Classes

In the preceding example, the get_one_record() function is intimately connected to the de�nition of the
User structure above. If that structure is changed, this function must also be changed. In order to access
the members of the User structure, that structure is an explicit call-by-reference parameter of the function.

The connection between the function and the data de�nition is a strong one, but the programmer is free
to screw everything up because, as the program is currently designed, there is no language mechanism to
prevent the programmer from breaking the program by failing to make modi�cations correctly.

In general, the connection between structure de�nition and the functions that act on them is weak and prone
to error. If the de�nition changes, so must every function that acts on instances of it. To reduce this chance,
one should put all functions and the de�nition into a single �le, with clear instructions. The programmer
is still able to foul everything up because there is no language mechanism to prevent the programmer from
breaking the program. This is one reason for the invention of an alternative language model known as
classes.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 6

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

A class is a collection of data and functions. It is like a structure with functions in it, except that it is
much more than that. The data and the functions are part of a single entity. When you declare a variable
whose type is a class, it has a special name. It is called an object . Do not get confused between objects and
members. The members of a class are the things de�ned between the curly braces, its elements. They are
like members of a structure. An object of a class is an instance of that class, i.e., a variable whose type is
that class.

Access to the members of a class may be restricted by the class's designer. Every member of a class, whether
a function or data, has either

• public,

• protected, or

• private

access. We will ignore protected access for now and focus on public and private access.

• A public member is one that can be accessed by any function in the program. It is just like a member
of a struct.

• A private member cannot be accessed by any functions in the program except those that are members
of that class (and some others, to be explained later).

In object-oriented programming, we hide the data of our class so that no code can see it except the functions
of the class to which it belongs. This is called data-hiding . We put all related data together into the class's
private data part. This is data encapsulation . The functions that act on this data are the only things
that are made public. These functions are the only means by which other parts of the program can access
or change the data of the class. Only the function prototypes are put in the public part of the class. The
actual de�nitions will be written someplace else. This is because it is no one's business how they work , but
just what they do. This concept of separating how functions work from what they do is called procedural

abstraction . The idea of encapsulating the data and functions that act on it into a single entity is called
data abstraction .

We will introduce class de�nitions by example rather than by formal syntax rules.

In the simplest case, the syntax of a class de�nition is similar to that of a structure de�nition, except that
it includes function prototypes and has access quali�ers:

c l a s s User
{
// The pub l i c i n t e r f a c e :
pub l i c :

void get_one_record (i s t ream & instream) ; // note no User parameter
void print_one_record (ostream & outstream) ; // note no User parameter

// The p r i va t e s t u f f :
p r i va t e :

s t r i n g f i r s tname ;
s t r i n g lastname ;
i n t s c o r e s [5] ; // an array o f 5 s c o r e s
Date birthday ; // This member i s a l s o a s t r u c t . Members can be ANY

// pr ev i ou s l y DECLARED type .
} ;

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 7

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

Points to Remember:

• The keyword class introduces the de�nition.

• The de�nition ends with a semicolon (just like a struct).

• public: (don't forget the colon) introduces the list of members that have public access. Until
another quali�er is reached, all following members, whether functions or data, have public access.

• The phrase private: (again there is a colon) introduces the list of members that have private access.
Until another quali�er is reached, all following members, whether functions or data, have private access.

• If the class has no access quali�er, then all members default to private access until another access
quali�er is reached. So the above could also have been written as

c l a s s User
{

s t r i n g f i r s tname ;
s t r i n g lastname ;
i n t s c o r e s [5] ; // an array o f 5 s c o r e s
Date birthday ; // This member i s a l s o a s t r u c t . Members can be ANY

// pr ev i ou s l y DECLARED type .
// The pub l i c i n t e r f a c e :
pub l i c :

void get_one_record (i s t ream & instream) ; // note no User parameter
void print_one_record (ostream & outstream) ; // note no User parameter

} ;

because the members firstname, lastname, scores, and birthday precede the public: section.

• Function members are not de�ned in the class, but only declared. This means only their prototypes
are written in the class de�nition.

• As with structures, array members should have constant size.

The public members of the class are accessed the same way that the members of a structure are accessed,
using the dot operator. For example, a main program could contain the lines

User user1, user2;

user1.get_one_record(cin);

Two instances of the User class named user1 and user2 are declared, and the member function get_one_record()
is called on the user1 instance. We use the language �called on an object� or �called on an instance� to
emphasize that the member function is a member of the class but that when it runs, it is acting on the data
contained in a speci�c instance of that class. In this case get_one_record() will run on user1.

Now we turn to the function de�nitions. Since the functions are declared within the class but not de�ned
there, their de�nitions are written outside of the class de�nition. Because their de�nitions are outside of
the class de�nition, their form is a bit di�erent than that of a function which is not a member function of
a class. This is because a class acts like a namespace; the names declared within the class de�nition have
scope that is limited to that de�nition. In order to use those names outside of the class de�nition, they
must be quali�ed in the same way that names in a namespace must be quali�ed. Thus, the de�nitions of
the get_one_record() and print_one_record() functions would be as shown in the listing below.

// Read a user record from the input stream in to a User s t r u c tu r e
void User : : get_one_record (i s t ream & instream)
{

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 8

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

instream >> f i r s tname >> lastname ;
instream >> birthday . month // birthday i s the c l a s s member , but i t i s a

>> birthday . day // s t r u c t and the dot i s needed to get to i t s
>> birthday . year ; // month , day , and year members

f o r (i n t i = 0 ; i < 5 ; i++)
instream >> sco r e s [i] ; // s c o r e s i s the c l a s s member too .

}

// Write a User s t r u c tu r e to the output stream , with some formatt ing
void User : : print_one_record (ostream & outstream)
{

outstream << lastname
<< " , " << f i r s tname
<< "\ t " << birthday . month
<< "/" << birthday . day
<< "/" << birthday . year
<< "\ t " ;

f o r (i n t i = 0 ; i < 5 ; i++)
outstream << sco r e s [i] << " " ;

outstream << endl ;
}

It is only the name of the function that gets quali�ed, not the entire prototype. It is incorrect to write the
de�nition like this:

User::void get_one_record(istream & instream)

{

... // INCORRECT

}

because this would mean that void is a name de�ned in the namespace User and get_one_record is a name
de�ned in the global scope.

Observe that the functions do not have a parameter that is an instance of the class, but they access the private
members such as firstname and lastname. This may seem confusing because firstname and lastname are
not written using the dot operator. Think about it though. If you were to try to use the dot operator, what
would be on its left side within this function?

When the function is called, it is called like this:

user1.get_one_record(cin);

In other words, it is called on a particular instance of the User class named user1, and so when it runs, the
member variables firstname, lastname, score and so on are the members of the object user1. This is why
they are written without the dot operator.

Separating Class Interface and Implementation

A class interface, or de�nition, should always be written separately from its implementation and they should
be placed into separate �les. The interface should be placed in a .h �le (a header �le) and its implementation
in a .cpp �le. This is in the spirit of procedural abstraction. The client code, and the people who write
it, do not need to see how the functions are written; they only need to see the prototypes. Because the
implementation �le has to have access to the class de�nition, it needs to include the interface �le usually, so
you should put an #include directive in the .cpp �le.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 9

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

Imagine that you are writing some class that you would like to distribute to many users. You want to
protect your code because you think it may have value. The way that you do this is by compiling the
implementation �le into an object �le and then distributing the header �le and the the object �le (either in
a .o �le or compiled into a library �le.) The header �le should be thoroughly documented.

Header Guards

As with any header �le, you need to enclose the code in a header guard . The #ifndef directive is used
to prevent multiple includes of the same �le, which would cause compiler errors. #ifndef X is evaluated to
true by the preprocessor if the symbol X is not de�ned at that point. X can be de�ned by either a #define

directive, or by a -DX in the compiler's command-line options. The convention is

#ifndef __HEADERNAME_H #define __HEADERNAME_H

// interface definitions appear here

#endif // __HEADERNAME_H

For those wondering why we need this, remember that the #include incorporates the named �le into the
current �le at the point of the directive. If we do not enclose the header �le in this pair of directives, and
two or more included �les contain an include directive for the header �le, then multiple de�nitions of the
same class (or anything else declared in the header �le) will occur and this is a syntax error.

Constructors

When you declare an object of a class, such as in this declaration of user1:

User user1;

you are telling the compiler to create an instance of the User class named user1. For this particular example,
it may not seem too hard for the compiler to �gure out how to create a variable of this type. But there are
questions. Should the compiler initialize the elements of the scores array to some particular value? Should
the last and �rst names be given a particular initial value?

C++ provides a way to initialize the members of a class object when the object is instantiated. When you
de�ne a class, you have the option to de�ne a special member function called a constructor . A constructor
is a member function that is executed when the object is initialized. Its de�nition is di�erent from that of
an ordinary function in that:

• Constructors have the same name as the class.

• They have no return values and cannot contain a return statement.

As an example prototype for a constructor for our User class:

User(string fname, string lname, Date bday);

de�nes a constructor with three arguments. Notice that there is no return type. Like ordinary functions,
constructors can have arguments. Like ordinary functions, they can be overloaded. Unlike ordinary functions,

• Constructors can have a special feature called an initializer list .

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 10

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

• Whether or not you create a constructor for a class, it does have one. If you do not provide a constructor
for a class, the compiler will generate one for it. This automatically generated constructor will create
an uninitialized object of that class. If you do provide any constructor for your class, the compiler will
not generate one for it. A constructor that you de�ne is called a user-de�ned constructor .

• If a class must initialize its data members, then the class needs a user-de�ned constructor because the
compiler-generated constructor will not be able to do this.

• Your program cannot call a constructor! It is called by the run-time library when the object must be
initialized.

We illustrate with an example. We enhance the User class to contain two overloaded constructors.

Example

c l a s s User
{
pub l i c :

User () ;
User (s t r i n g fname , s t r i n g lname , Date bday) ;
void get_one_record (i s t ream & instream) ; // note no User parameter
void print_one_record (ostream & outstream) ; // note no User parameter

p r i va t e :
s t r i n g f i r s tname ;
s t r i n g lastname ;
i n t s c o r e s [5] ;
Date birthday ;

} ;

The �rst constructor has no parameters. It is an example of a default constructor . A default constructor
is a constructor that can be called with no arguments.

The second has three arguments. It can be called with a �rst and last name and a date to be assigned to
the birthday member, and it could initialize the scores array to all zeros.

Your program cannot call the constructor. It is called automatically during program execution. When it is
called depends upon the type of variable that it is. For now you can think of variables with block scope as
being instantiated when the declaration within the block is reached.

The above constructors could be used to declare User objects as follows:

User user1; // default constructor invoked

Date bday = {1950,12,30}; // Create a date object

User user2(�Bjarne�, �Stroustrup�, bday); // second constructor invoked

User user3, user4; // default constructor invoked twice

• The default constructor is called when you declare an object of the class in the ordinary way, just by
writing the variable name after the class name, as in the �rst line.

• The non-default constructor is called by writing the class name, then the variable name, and after that
the parenthesized argument list, as in the third line. This is very di�erent from ana ordinary function
call!

The following are illegal ways to declare objects that have user-de�ned constructors:

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 11

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

User user5(); // ILLEGAL - no parentheses allowed

User user6;

const Date bday = {1900,1,1};

user6.User(�Sam�, �Spade�, bday); // ILLEGAL - user6 already exists and

// cannot call by name on an existing object

User user7 = {�Sam�, �Spade�, bday }; // Cannot initialize using ={}

• You cannot put empty parentheses after the variable name. The compiler sees this as a prototype for
a function. The �rst line for example looks like a function named user5 that returns a User object
and has no parameters.

• You cannot use a constructor to give values to an object that already exists. The object user6 was
created in line 2, and then a constructor was called on it in line 4, but it was already constructed.
That is an error.

• Although you can initialize structures using the curly brace initializer, in general you cannot do this
with classes. The only time you can do this with classes is if they have no private section, roughly.
Just avoid it.

De�ning Constructors

The two constructors above could be implemented as follows.

User : : User ()
{

f i r s tname = "" ;
lastname = "" ;
f o r (i n t i = 0 ; i < 5 ; i++) s c o r e s [i] = 0 ;
b i r thday . year = birthday . month = birthday . day = 0 ;

}

User : : User (s t r i n g fname , s t r i n g lname , Date bday)
{

f i r s tname = fname ;
lastname = lname ;
f o r (i n t i = 0 ; i < 5 ; i++) s c o r e s [i] = 0 ;
b i r thday = bday ;

}

Notice that the constructor name is quali�ed since its de�nition is outside of the class de�nition. The
default constructor assigns empty strings to string variables and zeros to integer variables. The non-default
constructor assigns the string arguments to the string member variables, and the Date bday to the birthday
member of the object, using a structure assignment.

We can also de�ne a default constructor in another way. Instead of writing it with no arguments, we can
give default arguments to all of its parameters, so that it can be called with no arguments. For example:

c l a s s User
{
pub l i c :

User (s t r i n g fname = "" , s t r i n g lname = "") ;
User (s t r i n g fname , s t r i n g lname , Date bday) ;
void get_one_record (i s t ream & instream) ;
void print_one_record (ostream & outstream) ;

p r i va t e :
s t r i n g f i r s tname ;

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 12

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

s t r i n g lastname ;
i n t s c o r e s [5] ;
Date birthday ;

} ;

The �rst constructor can be called with no arguments, in which case lname and fname will be assigned empty
strings.

The following class interface is illegal because there are two constructors that can be called with no arguments,
i.e., two default constructors.

c l a s s User
{ // ILLEGAL CLASS DEFINITION
pub l i c :

User () ; // d e f au l t con s t ruc to r
User (s t r i n g fname = "" , s t r i n g lname = "") ; // d e f au l t con s t ruc to r
User (s t r i n g fname , s t r i n g lname , Date bday) ;
void get_one_record (i s t ream & instream) ;
void print_one_record (ostream & outstream) ;

p r i va t e :
s t r i n g f i r s tname ;
s t r i n g lastname ;
i n t s c o r e s [5] ;
Date birthday ;

} ;

An important rule to remember is that a class cannot have more than one default constructor.

Initializer Lists

Constructors are di�erent from ordinary functions in another way: they can have a special section called an
initializer section , or initializer list , in their de�nitions. A simple one looks like this:

User : : User (s t r i n g fname , s t r i n g lname , Date bday) :
b i r thday (bday) , f i r s tname (fname) , lastname (lname)

{
f o r (i n t i = 0 ; i < 5 ; i++)

s c o r e s [i] = 0 ;
}

An initializer list is a comma-separated list of initializations introduced by a colon, immediately after the
function header and before the function block. An initialization is not an assignment operation. It looks
a bit like a function call. You write the name of a member variable from the class, followed by a pair of
parentheses, between which is the expression that initializes that variable. Its form is

member-variable-name(initial-value)

In the above example

firstname(fname)

is an initialization. Its e�ect is to copy the value of fname into firstname, as if it were an assignment
operation, but in fact it is more generally a call to a special initializer for the variable. You can think of it
like an assignment operation, but it is not. In general, the members of a class can be objects of other classes,
as we will see later, and the initializer will invoke their constructors when possible. Note that the birthday
member, which is a struct, has no �constructor� but we can initialize it just the same using

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 13

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

birthday(bday)

because the compiler creates what is e�ectively a constructor for it.

Two important thing to remember about initializer lists are that

• they are executed before the body of the constructor,

• the order in which the individual initializations take place is not the order in which they are listed but
the order in which they appear in the class's declaration, which is called their declaration order .

The member variables will be assigned initial values in the following order:

• firstname gets a copy of fname

• lastname gets a copy of lname

• birthday gets a copy of bday

We will say more about initializer lists later.

Explicit Constructor Calls

There is another way for constructors to be invoked, using an explicit constructor call. This is something you
may occasionally have to do, but it is an advanced idea. For now we just note it in passing. The following
is an alternative way to declare and initialize an object of the User class:

User newuser;

newuser = User(�Sam�, �Spade�, bday);

Let us break down what this means. The object newuser is declared in the �rst line. The default constructor
is used to create newuser. It has whatever values are given to it by the default constructor. In the second
line, the non-default constructor for the User class is invoked explicitly, with what looks like a function call
(even though I said that you can never do this earlier). But this explicit call to the constructor is not on any
object. It creates an object with no name, called an anonymous object . That anonymous object is then
copied into the newuser object.

To confuse things even further, you can invoke a default constructor explicitly, as in

User newuser;

newuser = User();

This is di�erent from the illegal

User newuser(); // remember that this is illegal!!

because the empty parentheses follow the class name, not the object name.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 14

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

Classes with Class Member Variables

Classes can have members of any type. The members can be members of another class. We can modify our
example by turning the Date structure into a class to demonstrate.

c l a s s Date
{
pub l i c :

Date (i n t year = 1972 , i n t month = 1 , i n t day = 1) ;
void s e t (unsigned i n t y , unsigned i n t m, unsigned i n t d) ;
i n t getday () ;
i n t getmonth () ;
i n t getyear () ;

p r i va t e :
unsigned i n t year ;
unsigned i n t month ;
unsigned i n t day ;

} ;

Now Date is a class with a single constructor that can be called with no arguments. If it is called with no
arguments, the date is set to January 1, 1972. Assume that our User class remains the same. It now has a
member that is a member of the Date class. We are forced to rewrite our member functions because they
access the members of the Date class, which are now private. The User class is not allowed to access the
private members of the Date class. Just because it contains a Date member does not give it this privilege.
Its functions are not member functions of the Date class.

It has to use the public member functions of the Date class to do its work. They now become

User : : User ()
{

f i r s tname = "" ;
lastname = "" ;
f o r (i n t i = 0 ; i < 5 ; i++)

s c o r e s [i] = 0 ;
b i r thday . s e t (0 , 0 , 0) ;

}

User : : User (s t r i n g fname , s t r i n g lname , Date bday) :
b i r thday (bday) , f i r s tname (fname) , lastname (lname)

{
f o r (i n t i = 0 ; i < 5 ; i++)

s c o r e s [i] = 0 ;
}

The �rst constructor calls the set() member function of the Date class to set the date of its birthday

member. The second constructor did not change. A very subtle thing is going on in the second constructor.
The initializer list

birthday(bday), firstname(fname), lastname(lname)

has an initialization of the birthday member. This has to invoke an initializer for the Date class. There is
only one user-de�ned constructor for this class and its prototype looks like

Date (int year = 1972, int month = 1, int day = 1);

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 15

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

If we were calling this constructor, we would have to ahve three integer arguments, but we do not. We just
have a Date argument, so this is not the constructor that is used to perform the initialization. What is?
The compiler generates an initializer that copies the members of bday into birthday.

We could also create a third User class constructor with the prototype

User(string firstname, string lastname, int y, int m, int d);

and implement it like this:

User : : User (s t r i n g f i r s tname , s t r i n g lastname , i n t y , i n t m, i n t d) :
b i r thday (y ,m, d) , fname (f i r s tname) , lname (lastname)

{
f o r (i n t i = 0 ; i < 5 ; i++)

s c o r e s [i] = 0 ;
}

explicitly calling the constructor of the Date class on the birthday member of the User class. Although
this makes the User class a bit more �exible, it breaks the data abstraction because the User class is given
values for the private member variables of the Date class in its own constructor.

const Member Functions

Every member function of a class falls into one of two categories: either it modi�es some data member of
the class or it does not. If it does not modify any member of the class, it is called an accessor function
� it retrieves data from the class object but does not modify it. Usually a class will have several accessor
functions. If it modi�es any part of the class object, it is called a mutator function.

You can tell the compiler and the reader of the code that a function is an accessor by putting the const

keyword after the parameter list in the function's prototype as well as in its de�nition. The const keyword
used in this way says that the function is guaranteed not to modify the object on which it is called. To
illustrate, we will supplement our Date class to use the const modi�er wherever we can:

c l a s s Date
{
pub l i c :

Date (i n t y = 1972 , i n t m = 1 , i n t d = 1) ;
void s e t (unsigned i n t y , unsigned i n t m, unsigned i n t d) ;
i n t getday () const ;
i n t getmonth () const ;
i n t getyear () const ;

p r i va t e :
unsigned i n t year ;
unsigned i n t month ;
unsigned i n t day ;

} ;

The three functions that do not change the object are the getX() type functions: getday(), getmonth(),
and getyear(). They are marked as const. We can now modify the User class interface as well:

c l a s s User
{
// The pub l i c i n t e r f a c e :
pub l i c :

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 16

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

User () ;
User (s t r i n g f i r s tname , s t r i n g lastname , Date bday) ;
User (s t r i n g f i r s tname , s t r i n g lastname , i n t y , i n t m, i n t d) ;
s t r i n g f i r s tname () const ;
s t r i n g lastname () const ;
i n t h i gh sco r e () const ;
i n t lowscore () const ;
void getb i r thday (unsigned i n t &m, unsigned i n t &d) const ;
void read_record (i s t ream & instream) ;
void write_record (ostream & outstream) const ;

// The p r i va t e s t u f f :
p r i va t e :

s t r i n g fname ;
s t r i n g lname ;
i n t s c o r e s [5] ;
Date birthday ;

} ;

Remember to put the const keyword after the header in the function de�nitions as well.

If you tell the compiler that the getbirthday() member function of the User class is const, but you do not
mark the functions that it calls on that birthday member as const, then the compiler will issue an error
message. This is because the compiler assumes that any function not marked const may modify the object
on which it is called. The getbirthday() function looks like this

void User : : ge tb i r thday (unsigned i n t &m, unsigned i n t &d) const
{

m = birthday . getmonth () ;
d = birthday . getday () ;

}

If getmonth() and getday() are not const member functions of the Date class, the compiler will assume
that they modify the Date object, birthday, on which they are called. Since getbirthday() is supposed to
be a const function, this contradicts the requirement, so the compiler issues an error message.

You should get into the habit of marking every accessor as a const member function.

Static Member Variables

A member of a class, whether a data member or a member function, can be designated as static by preceding
its declaration with the keyword static. Static data members are a bit easier to understand so we will start
with them. A static data member of a class is one that is not a part of any of the objects of the class,
but is instead a single member that they all share. It is like a global variable in a program except that it is
restricted to be "global" among the objects of the class.

To declare that a data member is static, you have to do two things:

1. You must precede its declaration within the class with the static keyword (before the type and any
other quali�ers such as const), and

2. You must put its de�nition outside of the class de�nition, in a surrounding namespace scope, without
the static keyword but with its name quali�ed by the :: operator.

As this is surely confusing, here is an example.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 17

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

Example

class Myclass

{

public:

static int counter; // declares counter to be static

static const int maxvalue = 10; // a static constant member

int sum;

};

int Myclass::counter; // defines Myclass::counter

const int Myclass::maxvalue; // defines Myclass::maxvalue

In this example, the variables counter and maxvalue are static. The declarations within the class are just
declarations, not a de�nitions. (In this example, you cannot see the di�erence; trust me for now that there
is a di�erence.) Each must be de�ned outside of the class but within a surrounding namespace scope. The
simplest thing to do is to put its de�nition in the same �le, so that Myclass and Myclass::counter and
Myclass::maxvalue are de�ned in �le scope (known as the global namespace.)

If we declare a couple of objects of class Myclass,

Myclass obj1, obj2;

and each will have its own copy of sum, but they will share counter.

obj1.sum = 1;

obj2.sum = 2;

obj1.counter = 0;

obj2.counter = 20;

cout <�< obj1.counter <�< endl; // outputs 20

Notice that we accessed counter using the member access syntax (i.e., using the dot operator) on speci�c
classes. Because counter does not belong to any one object but is really like a part of the class itself, we can
also access it using the syntax Myclass::counter. So we can also write

Myclass::counter = 20;

obj2.counter += 10;

cout <�< Myclass::counter <�< endl; // outputs 30

Does this look a bit familiar? Recall how, when formatting output on an output stream, you used the
instructions

cout.setf(ios::fixed);

cout.setf(ios::showpoint);

to display numbers as �xed decimals. The ios::fixed argument is a static member of the class known as
ios.

The maxvalue member is a constant member. We are allowed to initialize it within the class declaration.
We could have also initialized it in the de�nition ouside of the class de�nition.

A static member function is a member function that cannot access the non-static parts of the class. This
implies that it can only access the static data members of the class. If multiple objects share a static data
member, they each have the ability to update that member. Although this is possible, it is better if they all
call a function that is not called on any particular object. This is one use of a static member function. In
the above example, we could de�ne a static member function that resets the counter:

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 18

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes
Namespaces, Structures and Classes

Prof. Stewart Weiss

class Myclass

{

public:

static int counter; // declares counter to be static

static const int maxvalue = 10; // a static constant member

static void reset(); // a static function that resets counter

int sum;

};

int Myclass::counter; // defines Myclass::counter

const int Myclass::maxvalue; // defines Myclass::maxvalue

void Myclass::reset() : counter(0) {}

The keyword static is not repeated when the function is de�ned.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 19

http://creativecommons.org/licenses/by-sa/4.0/

