
Software Design Lecture Notes Prof. Stewart Weiss
Implicit Constructors

A Note About Implicit Constructors
©Stewart Weiss

The subtleties of implicit conversions are explained here. The rule to remember is that C++ will
only perform implicit conversions with a one-argument constructor. More accurately, it will
perform the conversion if the class has a constructor that can be called with one argument. For
example, consider the class definition:

class MyClass
{
public:

MyClass(int a=0, int b = 0): x(a), y(b) {}
private:

int x;
int y;

};

The following is a legal implicit conversion of an integer to an object of type MyClass:

MyClass A = 6; // converts 6 into the object with x=6, y = 0 and copies it into A

but

MyClass B = {4,5};

is illegal because it attempts to convert an aggregate structure into a class object.

Note that it makes no difference whether the object is a class or a struct. If I replace the
definition with

struct MyClass
{
public:

MyClass(int a=0, int b = 0): x(a), y(b) {}
private:

int x;
int y;

};

the same conversions are allowed.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by- sa /4.0/ . 1

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

	A Note About Implicit Constructors

