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The subtleties of implicit conversions are explained here. The rule to remember is that C++ will
only  perform implicit  conversions  with a  one-argument  constructor.  More accurately,  it  will
perform the conversion if the class has a constructor that can be called with one argument.  For
example, consider the class definition:

class MyClass
{
public:

MyClass(int a=0, int b = 0): x(a), y(b) {}
private:

int x;
int y;

};

The following is a legal implicit conversion of an integer to an object of type MyClass:

MyClass  A = 6;   // converts 6 into the object with x=6, y = 0 and copies it into A

but 

MyClass  B = {4,5};   

is illegal because it attempts to convert an aggregate structure into a class object.

Note that it makes no difference whether the object is a class or a struct. If I replace the 
definition with 

struct MyClass
{
public:

MyClass(int a=0, int b = 0): x(a), y(b) {}
private:

int x;
int y;

};

the same conversions are allowed.
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