
C SCI 493.66 UNIX Tools Prof. Stewart Weiss
vi Primer

A vi Primer

vi is a simple, visual editor. It is very fast, easy to use, and available on virtually every UNIX
system. Although the set of commands is very cryptic, I learned it, as have thousands of others,
which is proof that you can learn it too.

Notation
In the rest of these notes,
1. <CR> will denote the carriage return character obtained by pressing the Enter key on the

keyboard and that we normally call the newline character.

2. <SP> will denote the space character, obtained by pressing the space bar. It will sometimes
be necessary to represent this character as an underline "_" instead of <SP>.

3. <ESC> will represent the character obtained by pressing the escape key.

4. In general, angle brackets <…> around a word represents the character(s) described by the
word, so for example, <positive integer> will mean any positive integer, and <char> will
mean any single character.

Basics

1. Starting vi. That is easy. To edit a file named myfile, at the command prompt, type

vi myfile

2. vi is a 3-state finite automaton, with states

COMMAND MODE

INPUT MODE

LAST-LINE MODE

INSERT
MODE

COMMAND
MODE

i,a,o,c,s,I,A,O,C,S,R

:,\,?,!

Enter key

Escape key

LAST LINE
MODE

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by- sa /4.0/ . 11 of 13

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

C SCI 493.66 UNIX Tools Prof. Stewart Weiss
vi Primer

When vi starts up, it is in COMMAND MODE. I.e., COMMAND MODE is the start
state. The diagram shows the keystrokes that change vi's state.

What you can do in each state and how you can change vi's state is discussed below.

3. vi is CASE-SENSITIVE: everything you type must be in the correct case. If you read that
"w" advances to the first character of the next word in the edited file (which it does) then you
must use "w", not "W". The uppercase letter will do something else.

4. vi makes a copy of the file in a work buffer and places this in a temporary location (usually
in /tmp or /var/tmp) often called the scratch directory in UNIX. On some UNIX
systems, this is a world-readable file, in which case you should not edit documents you do
not want people to see using vi. You can edit them on a non-timeshared, non-networked
computer (your home computer) instead and upload them to the UNIX system. You can also
use vi in a secure mode, in which it encrypts the work buffer. See the man page for vi for
details – look up the -x option. First check whether the system is making the work buffers
world-readable by running ls –l on the scratch directory. Note: if you do use the –x option for
vi, no other program will be able to read the file, because vi will encrypt the saved file also.
To decrypt the file, you will need to use the crypt command, as in:

crypt your_encryption_key < file_to_decrypt > cleartext_file

5. The cursor in vi is always on a character, not between characters as it is in Microsoft Word.

6. The start of a line is the leftmost NON-WHITE-SPACE character. Commands that move the
cursor to the start of a line or modify the start of a line act on this first non-white-space
character. If a line starts with leading blanks or tabs, these are not treated as part of the line
when referring to the "start".

7. The end of a line is the last character before the <CR>, even if it is a white space character.

8. vi 's internal help command is the only way to get help. Type :help<CR> while in vi.

Overview of Command Mode

COMMAND MODE is the base camp for vi. It is like the campsite where you keep your tent.
You go out on missions and return to camp each time, unless you decide to pack up and quit, in
which case that is the last mission. So COMMAND MODE serves two purposes: (1) as a state
in which to jump to other states, and (2) as a state in which to navigate, get text information,
make global changes, and otherwise modify the document. In particular, the most important
actions that you should know about are:
 Positioning the text insertion point, i.e., navigating,
 Displaying information such as where tabs and line feeds are,
 Redrawing the screen,
 Entering INPUT MODE,
 Entering LAST-LINE MODE,
 Substituting and deleting text,
 Cutting and pasting text.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by- sa /4.0/ . 22 of 13

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

C SCI 493.66 UNIX Tools Prof. Stewart Weiss
vi Primer

Overview of Input Mode
The diagram shows that INPUT MODE is entered when one of several characters is typed in
COMMAND MODE. The differences between what these different characters do will be
discussed below. Regardless of how it is entered, once vi is in INPUT MODE, all text that you
type becomes part of the document and INPUT MODE does not "know" how it was entered.
The text is always placed to the immediate left of the cursor, i.e., the text insertion point (TIP) is
to the left of the cursor. All printable text is inserted literally, including newlines. Control
characters are interpreted, so you cannot insert them. To type control characters without their
being interpreted first, type a Control-V (which I will write as ^V in these notes) followed by the
character. For example, to insert a Control-C (^C) into a file in INPUT MODE, you would type
^V^C.

When you are finished entering text, you type the escape-key <ESC> to return to COMMAND
MODE. (You escape to base camp.)

Overview of Last-Line Mode
From COMMAND MODE, one of the characters, :, \, ?, or ! puts vi into LAST-LINE MODE.
These characters are commands. In LAST-LINE MODE, vi receives the input you type,
followed by the Enter key (<CR>), and hands it to one of these commands. So remember the
difference: LAST-LINE MODE is terminated by a <CR> and INPUT MODE is terminated by
a <ESC>. The most important of these commands are used for
 Copying the work buffer to a file,
 Reading the contents of another file into the work buffer at the current cursor position,
 Making changes to a set of consecutive lines of the file,
 Setting line markers in a file,
 Yanking (copying to clipboard), copying sequences of lines to another location, deleting

sequences of lines, or moving consecutive groups of lines from any part of the document to
any other part,

 Quitting vi, saving or not saving the work, saving the work to the same or a different file,
 Searching (up or down) for lines that match a given pattern (extended regular expression).

Command Mode Operation

Navigation
vi treats the display as a two dimensional array of character positions. To move the cursor up,
down, left, or right one position can be done with either the arrow keys on the keyboard, or with
their character equivalents. The picture below illustrates. "k" is an upward movement for
example, and "j" is downward.
 k
 h l moves cursor one character up, right, down, or left as illustrated
 j

To move more than one character at a time, you have several options, because vi has many
cursor movement options. These are summarized here. I have included many, but not all
navigation commands. Movements based on the line structure of the text, are first. In some cases

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by- sa /4.0/ . 33 of 13

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

C SCI 493.66 UNIX Tools Prof. Stewart Weiss
vi Primer

I include more than one way to perform the operation. The arrow keys may not work on all
systems, since it depends upon how the terminal has been configured. In all cases, the first key
sequence listed is the one that is guaranteed to work.

If you are used to using an application like Microsoft Word then some of the concepts in vi
require explanation. In Word, a paragraph is a sequence ending in a carriage return <CR>. In vi,
a line ends in a <CR> and a paragraph ends in two consecutive ones, <CR><CR>. Also, vi
defines a sentence as a sequence of words that ends in a sentence ending punctuation mark such
as ".", "?", or "!".

Operation Key Sequence(s)
Down one line j, Down Arrow, ^N
Up one line k, Up Arrow, ^P
Left one character h, Backspace, Left Arrow
Right one character l, Space Bar, Right Arrow
First non-white character on next line <CR>, +, ^N
First non-white character on previous line -
Goto line <line number> <line number>G
Goto last line in file G

Absolute left-most position on current line 0 (zero)
Left-most non-white character on current line ^, Home Key
Last character on the line $, End Key
Go to character position on current line <position as a number>

An integer replication factor can be prefixed to any command, not just navigation. For example,
3j means move down 3 lines. This integer is called a multiplier in vi.
The following are movements based on the word structure of the text.
.
Next word ignoring punctuation chars w
Next word including punctuation chars W
Previous word excluding punctuation chars b
Previous word including punctuation chars B
End of next word excluding punctuation chars e
End of next word including punctuation chars E

The definition of a word is somewhat complex. A word is a sequence of one or more word
characters, but punctuation complicates it a little. If you want to skip across white space, use W.
There are also commands to move across sentences and paragraphs:

Move to the start of the next sentence)
Move to the start of the previous sentence (
Move to the start of the next paragraph }
Move to the start of the previous paragraph {
Move right to the next matching character f<character>
Move left to the previous matching character F<character>

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by- sa /4.0/ . 44 of 13

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

C SCI 493.66 UNIX Tools Prof. Stewart Weiss
vi Primer

Move right to position before matching character t<character>
Move left to position after matching character T<character>
Repeat previous f/F/t/T move ;
Repeat previous f/F/t/T move in reverse ,

Adding and Changing Text
Text is added to a document in INPUT MODE, which is entered from COMMAND MODE by
typing one of the characters below. To return to COMMAND MODE from INPUT MODE,
you type the <ESC> key. These are the most common and useful ways of adding text. There are
others that I am not showing you.

Add Operations Key Sequence
Append text to the right of the cursor a
Append text at the end of the line A
Insert text to left of the current cursor i
Insert text to left of the first non-white character on the line I
Add a new line below the current line o
Add a new line above the current line O

Change operations
Replace text R
(replaces all text as you type.)
Change a word cw
Change text through the end of the line c$
Change text up to the next quote ct”
Change the entire line cc
Right shift the line >
Left shift the line <
Substitute input text for character(s) s/<pattern>/<pattern/<flags>

This last operator, the substitute operator, is the single most important operator in vi. It is
described in the section below entitled About the Substitute Operator.

If you want to replace a single character, you type r<character>
and this will return to COMMAND MODE.

Deleting Text
Delete character to the right of the cursor x
Delete character to the left of cursor X
Delete current line dd
Delete current word dw
Delete to the end of the current word de
(does not delete delimiter)
Delete to end of sentence, paragraph, line, etc d), d}, d$ etc.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by- sa /4.0/ . 55 of 13

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

C SCI 493.66 UNIX Tools Prof. Stewart Weiss
vi Primer

depending on symbol after d

Miscellaneous Useful Commands
Redraw the screen ^L
Change case of a letter ~
Join the current line with the next line J

Copying and Pasting
When you delete text using the "d" operator or its variants, vi stores that text in a buffer. There
are commands to paste the contents of the buffer to the current cursor position. There are also
multiple buffers, but I will not discuss this here.

Paste the buffer contents to the right or below the cursor p
Paste to the left or above the cursor P

There are ways to copy text into the buffers without deleting it. This is called yanking in vi.

Copy word yw
Copy to the end of line y$
Copy line yy

All of these can be preceded by a multiplier.

Last Line Mode Operation
LAST-LINE MODE is used for editing that affects a file globally, and for interacting with the
file system and the operating system and shell. There are several ways to enter LAST LINE
MODE. I start with the colon ":". When the ":" is typed, vi enters colon mode. In colon mode,
you can enter the following commands, all of which are followed by a <CR>, which returns vi to
COMMAND MODE.

File Operations Key Sequence
Save the buffer to the file opened by vi w
Save a copy to the file named <file> w <file>
Overwrite the file <file> if it already exists w! <file>
Quit q
Save and quit wq
Quit without saving q!
Read contents of <file> immediately after the current line r <file>
Display name of current file f

You can also create marks for lines in the file.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by- sa /4.0/ . 66 of 13

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

C SCI 493.66 UNIX Tools Prof. Stewart Weiss
vi Primer

Make the character <char> represent the current line k<char>

In addition, in colon mode there are operators that can act on a range of lines. A range is of the
form

<line expression>, <line expression>

where <line expression> is either a line number, a quote followed by a line mark, or a regular
expression, described below. When an expression is ambiguous, meaning that it might match
more than one line, it is taken to be the first of the matched lines. This can happen with regular
expressions, since many lines might match an expression.

Examples of Range Expressions

Range Meaning

1,5 lines 1 through 5
1,$ all lines in file
'x, $ lines from the one marked x to the last line
'a, 'b lines from the one marked a to the one marked b
/aa*/,/bb*/ all lines from the first occurrence of a line
matching pattern aa* to the first occurrence of a line matching bb*

In colon mode, you can use some of the operators already mentioned above, as well as some that
can only be used in colon mode. The most powerful of colon mode operators is the substitute
operator, s. To understand how to use it, you need to know about patterns. Therefore, I will
delay discussing the substitute operator until after I present patterns to you. The operators that
can be used in colon mode are:

delete d
yank y
right-shift >
left-shift <
substitute <range> s/target-pattern/replacement-
pattern/flags

Examples
:1,10d delete the first ten lines
:6,$y copy lines 6 to the end into a buffer
:1,$> right shift the entire file

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by- sa /4.0/ . 77 of 13

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

C SCI 493.66 UNIX Tools Prof. Stewart Weiss
vi Primer

In addition, colon mode has the move and copy operators, m and co. These are a little tricky
because the source range cannot overlap the target line. In other words, you cannot move lines 1
through 10 to line 5, or copy lines 1 through 10 to line 5.

Move the range of lines to the line <line> <range-expression>m<line>

Copy the range of lines to the line <line> <range-expression>co<line>

Searching
There is a way to search for patterns in the file using a pattern matching language much richer
and more complex than the ones you will find in applications like Microsoft Word. The
characters / and ? are pattern search operators. The / operator searches downward and wraps
around to the top and the ? searches up and wraps around to the bottom. In short,

Search downward for pattern /<pattern>
Search upward for pattern ?<pattern>
Repeat last search in the same direction n
Repeat last search in the opposite direction N

About Patterns
A pattern can be a simple string, or it can be a regular expression constructed by the rules
described in the regexp man page. Type "man regexp" on the UNIX system to get the full
story. This is only a brief synopsis of patterns. There are many more ways to construct them
than are shown here.

1. Certain characters are special characters and have special meanings. These are period (.),
asterisk (*) , left square bracket ([), backslash (\), caret (^), dollar-sign ($).

2. All other characters are one-character regular expressions.

3. The period (.) is a one-character regular expression that matches any character except
NEWLINE.

4. The special characters can be matched by escaping them with a backslash: \$ matches $
and \[matches [for example.

5. Let p and q represent patterns (regular expressions). Then the following are also patterns

Pattern Meaning
pq matches any string that matches p followed by any

string that matches q
p$ matches p only when anchored at the end of a line
^p matches p only at the beginning of a line
\(p\) matches p and saves the matching string in the next

free register

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by- sa /4.0/ . 88 of 13

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

C SCI 493.66 UNIX Tools Prof. Stewart Weiss
vi Primer

[<list_of_chars>] matches a single character in the list
[c1-c2] matches a single character in the range c1 to c2

where c1 precedes c2 in ASCII ordering
[^<char_range>] matches any single char except those in the

specified range
Pattern Meaning
c* matches 0 or more consecutive c's
c\{n,m\} match between n and m consecutive c's
c\{n,\} match n or more c's
c\{,m\} match up to m consecutive c's

This is just a start. I suggest you read the man page for regexp, since this is the most powerful
part of vi, and these regular expressions also form the pattern matching language of sed, awk, and
other tools.

About the Substitute Operator

The substitute operator, once again, is used with the syntax,

s/target-pattern/replacement-pattern/

or

s/target-pattern/replacement-pattern/flags

in COMMAND MODE and

<range expression> s/target-pattern/replacement-pattern/

or

<range expression> s/target-pattern/replacement-pattern/flags

in LAST-LINE MODE (meaning you typed a colon first.). If you omit <range expression>
in LAST-LINE MODE, it applies the substitution only to the current line.

The substitute operator will search for the first occurrence in each line of the range or the current
line only in COMMAND MODE and will replace the longest matching occurrence with the
replacement pattern. If you want all occurrences on the line to be replaced, put a "g" where it
says flags above. "g" means global.

Examples

Suppose the current line is

abcdeabcde meeemeeemeee 12345123451234512345

Command Resulting Line

s/abcde/xxxxx/ xxxxxabcde meeemeeemeee 12345123451234512345

s/abcde/xxxxx/g xxxxxxxxxx meeemeeemeee 12345123451234512345

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by- sa /4.0/ . 99 of 13

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

C SCI 493.66 UNIX Tools Prof. Stewart Weiss
vi Primer

s/me*/X/ abcdeabcde Xmeeemeee 12345123451234512345

s/me*/X/g abcdeabcde XXX 12345123451234512345

s/\(m.*\)<SP><SP>*/\1/ abcdeabcde meeemeeemeee12345123451234512345

s/\(.....\)\1// meeemeeemeee 12345123451234512345

s/\(.....\)\1//g meeemeeemeee

Comments

The first two are easy to follow. Adding the g flag makes the substitute apply to all occurrences
of abcde. The third looks for a string consisting of 5 letters followed by the exact same 5 letters
and deletes the first such occurrence. The fourth does this to all such strings on the line.

Useful or Enlightening Patterns

Some patterns arise often. Here are some I find most useful
[a-z][a-z]* a lowercase word
[A-Z][a-z]* a capitalized word
[a-z-][a-z-]* a lowercase word with hyphens, like last-line

In the above example, the last hyphen is not part of a range; it is the literal hyphen character.
UNIX regular expressions allow the hyphen to appear as the first or last character in the […]
operator without having to be escaped. So the next one is equivalent.

[-a-z][-a-z]* same as above. This is another way to do it
[]] matches right square bracket . The [must be the

first character after the opening [otherwise it must
be escaped with a backslash as in the next example.

[\]] same as above
[1-9][0-9]* a positive integer
[<SP>][<SP>]* white space (the <SP> is the white space character.

See Notation paragraph above.)
[a-zA-Z_][0-9A-Za-z_]* C++ identifier
\([a-z][a-z]*\)\1 words of the form ww, where w is a word.
^$ blank line
[^a-zA-Z0-9][^a-zA-Z0-9]* sequences of characters other than letters or digits

Example 1

Suppose I have a file consisting of lines of the form

 Albert Sionov asionov shiva
 Andrzej Such asuch shiva
 Jacek Szulc jszulc hejira
 Khai Tran ktran hejira

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by- sa /4.0/ . 1010 of 13

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

C SCI 493.66 UNIX Tools Prof. Stewart Weiss
vi Primer

 Karl Treen ktreen hejira

This is a list of first name, last name, user-name, host-name records. The amount of white space
varies from one line to another.

Suppose I want to convert it to the form

asionov@shiva Albert Sionov
asuch@shiva Andrzej Such
jszulc@hejira Jacek Szulc
ktran@hejira Khai Tran
ktreen@hejira Karl Treen

in which the email address is separated from the first name, last name by a tab, and the first name
and last name are separated by a space character. I can do this in several steps.
First, I start by deleting leading white space:

:1,$s/^ []*//

The target pattern is a sequence of one or more space characters anchored to the start of the line.
The replacement pattern is empty. The effect is to delete all leading white space:

Albert Sionov asionov shiva
Andrzej Such asuch shiva
Jacek Szulc jszulc hejira
Khai Tran ktran hejira
Karl Treen ktreen hejira

I then replace the white space between the username and the last word on the line by a "@".
Since I want this to work for any last word on the line, I use the pattern [a-z][a-z]* to represent a
sequence of one or more lowercase letters. To anchor to the end, I can use [a-z][a-z]*$. So I start
to write:

:1,$s/ []*[a-z][a-z]*$/

but how do I get the word that was matched to appear again. That is where the \(…\) brackets
work. I tell vi to remember the matched string, which it places in the variable \1. I then use it in
the replacement string:

:1,$s/ []*\([a-z][a-z]*\)$/@\1/

The result is

Albert Sionov asionov@shiva
Andrzej Such asuch@shiva

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by- sa /4.0/ . 1111 of 13

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

C SCI 493.66 UNIX Tools Prof. Stewart Weiss
vi Primer

Jacek Szulc jszulc@hejira
Khai Tran ktran@hejira
Karl Treen ktreen@hejira

Finally, I want to make the last word on the line the first word, and the first two words, the last
two. I can do this by remembering the three words and re-ordering them.

:1,$s/\([a-zA-Z][a-zA-Z]*\) []*\([a-zA-Z][a-zA-Z]*\) []*\(.*\)$/\3 \1 \2/

This is in the form
:1,$s/\(pattern1\) \(pattern2\) []*\(pattern3\)/ \3 \1 \2/

which saves the first match into \1, saves the second into \2 and the third into \3. The first and
second patterns match words that have upper and lowercase letters. The third matches any string
at the end of a line. The result is

asionov@shiva Albert Sionov
asuch@shiva Andrzej Such
jszulc@hejira Jacek Szulc
ktran@hejira Khai Tran
ktreen@hejira Karl Treen

I could have done this transformation using a single substitute command, but it would have been
a lot of typing, and one small mistake would have required retyping the whole line, so it is not
worth the challenge. It may not look like this on your screen because the tab character settings
determine how close the second column will be to the first.

Example 2

Suppose that you want to modify a file containing ordinary text consisting of sentences and
paragraphs so that every sentence starts on a new line. Assume that all sentences end in either a
period, question mark, or exclamation mark, and that a new sentence is separated from the
previous sentence by one or more spaces, as is the convention. Then you need to replace the
sequence consisting of the end-of-sentence mark, one or more spaces, first character of new
sentence by the sequence consisting of the end-of-sentence mark, newline/carriage-return, first
character of new sentence. Note that sentences that start paragraphs will not be changed if you
do this because they already have a newline/carriage-return preceding them. The vi command to
do this is

:1,$s/\([\.\?\!]\) []*\(.\)/\1^V^M\2/g

Notes
1. When you type the Control-V (^V) it will not be visible. When you then type the Control-M,

it will appear as a ^M on the command line.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by- sa /4.0/ . 1212 of 13

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

C SCI 493.66 UNIX Tools Prof. Stewart Weiss
vi Primer

2. The g on the end is the global flag, which means that if there is more than one match on a
line, it should apply the substitution to all matches, from left to right.

3. The characters ".", "?", and "!" must be escaped inside the […] operator.
4. The \1 and \2 are the strings that matched the first \(…\) and the second \(…\) respectively.

Example 3

Suppose that you want to change a C or C++ program so that every assignment operator has
white space on either side of it. You are not sure whether they all do – some might and some
might not. The following two vi substitution will do the trick.

:1,$s/\([^ =]\)=/\1 =/g

:1,$s/=\([^ =]\)/= \1/g

The first pattern is any character other than space or "=" followed by a "=". If there is a match,
this two character sequence is replaced by the matched character then " =". The second pattern is
the symmetric equivalent. I exclude the "=" because I do not want to modify equality
comparisons. The "g" flag is just in case there are multiple assignments on a row.

Resources

http://www.eng.hawaii.edu/Tutor/vi.html

A web site with a good tutorial on vi. But be warned – they view vi as having only two states,
not three.

 http://www.download.com/Software-Online/3260-20_4-54451.html

This is the page from which you can download Lemmy as well as WinXS. Lemmy is a UNIX vi
application that runs on almost all versions Windows. It lets you use almost all of the standard vi
editing commands and also supports the traditional Windows cut and paste features. It is not
exactly like vi, but close enough. It is worthwhile to download Lemmy and use it. When I write
programs for UNIX on my Windows system at home, I write them in Lemmy and then upload
them to the UNIX system via an FTP application.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by- sa /4.0/ . 1313 of 13

http://www.eng.hawaii.edu/Tutor/vi.html
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.softwareonline.org/products.html

	Notation
	Basics
	Overview of Command Mode
	Overview of Input Mode
	Overview of Last-Line Mode
	Command Mode Operation
	Navigation
	Adding and Changing Text
	Deleting Text
	Miscellaneous Useful Commands
	Copying and Pasting

	Last Line Mode Operation
	Searching
	About Patterns
	About the Substitute Operator
	Useful or Enlightening Patterns

	Example 1
	Example 2
	Example 3
	Resources

