
 
Toward Spoken Dialogue as Mutual Agreement 

Susan L. Epstein1,2, Joshua Gordon4, Rebecca Passonneau3, and Tiziana Ligorio2 

1Hunter College and 2The Graduate Center of The City University of New York, New York, NY USA 
3Center for Computational Learning Systems and 4Department of Computer Science, Columbia University New York NY USA 

susan.epstein@hunter.cuny.edu, becky@cs.columbia.edu, joshua@cs.columbia.edu, tligorio@gc.cuny.edu 
 
 

 
Abstract 

This paper re-envisions human-machine dialogue as a set of 
mutual agreements between a person and a computer. The 
intention is to provide the person with a habitable experi-
ence that accomplishes her goals, and to provide the com-
puter with sufficient flexibility and intuition to support 
them. The application domain is particularly challenging: 
for its vocabulary size, for the number and variety of its 
speakers, and for the complexity and number of the possible 
instantiations of the objects under discussion. The brittle 
performance of a traditional spoken dialogue system in such 
a domain motivates the design of a new, more robust social 
system, one where dialogue is necessarily represented on a 
variety of different levels. 

Introduction   
A spoken dialogue system (SDS) has a social role: it sup-
posedly allows people to communicate with a computer in 
ordinary language. A robust SDS should support coherent 
and habitable dialogue, even when it confronts situations 
for which it has no explicit pre-specified behavior. To en-
sure robust task completion, however, SDS designers typi-
cally produce systems that make a sequence of rigid de-
mands on the user, and thereby lose any semblance of nat-
ural dialogue. The thesis of our work is that a dialogue 
should evolve as a set of agreements that arise from joint 
goals and the collaboration of communicative interaction 
(Clark and Schaefer, 1989). The role of metacognition here 
is to use both self-knowledge and learning to represent dia-
logue and to enhance the SDS. As a result, dialogue should 
become both more habitable for the person and more suc-
cessful for the computer. This paper discusses the chal-
lenges for an SDS in an ambitious domain, and describes a 
new, metacognitively-oriented system under development 
to address the issues that arise in human-machine dialogue. 
 Our domain of investigation is the Heiskell Library for 
the Blind and Visually Impaired, a branch of The New 
York Public Library and part of The Library of Congress. 
Heiskell’s patrons order their books by telephone, during 
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conversation with a librarian. The volume of calls from its 
5028 active patrons, however, promises to outstrip the ser-
vice currently provided by its 5 librarians.  
 The next section of this paper describes the challenges 
inherent in spoken dialogue systems. Subsequent sections 
describe a traditional SDS architecture, demonstrate the 
brittle behavior of an SDS built within it, and re-envision a 
new SDS within the structure of a cognitively-plausible ar-
chitecture. The paper then posits a paradigm that endows 
human-machine dialogue with metacognition, explains 
how metacognition is implemented in this re-envisioned 
system, and reports on the current state of its development. 

Challenges in SDS Implementation 
The social and collaborative nature of dialogue challenges 
an SDS in many ways. The spontaneity of dialogue gives 
rise to disfluencies, where a person repeats or interrupts 
herself, produces filled pauses or false starts and self-
repairs. Disfluencies play a fundamental role in dialogue, 
as signals for turn-taking (Gravano, 2009; Sacks, Schegloff 
and Jefferson, 1974) and for grounding to establish shared 
beliefs about the current state of mutual understanding 
(Clark and Schaefer, 1989). Most SDSs handle the content 
of the user’s utterances, but do not fully integrate the way 
they address utterance meaning, disfluencies, turn-taking 
and the collaborative nature of grounding. 
 During dialogue, people simultaneously manage turn-
taking and process speech. The complexity of speech rec-
ognition for multiple speakers, however, requires the SDS 
to have an a priori dialogue strategy that determines how 
much freedom it offers the user. An SDS that maintains 
system initiative completely controls the path of the dia-
logue, and dictates what the person may or may not say 
during her turn. (“SAY 1 FOR ORDERS, SAY 2 FOR 
CUSTOMER SERVICE, OR…”). In contrast, habitable dialogue 
requires mixed initiative, where the user and the system 
share control of the path the dialogue takes. Of course, 
mixed initiative runs the risk that the system will find itself 
in a state unanticipated by its designer, and no longer re-
spond effectively and collaboratively. Because fallback re-
sponses (e.g., asking the user to repeat or start over) are 
brittle, current mixed-initiative systems pre-specify how 



much initiative a user may take, and restrict that initiative 
to specific kinds of communicative acts. 
 An SDS receives a continuous stream of acoustic data. 
Automated Speech Recognition (ASR) translates it into 
discrete linguistic units (e.g., words and phonemes) repre-
sented as text strings. Such continuous speech recognition 
over a large vocabulary for arbitrary speakers presents a 
major challenge. The Heiskell Library task includes 47,665 
distinct words from titles and author names, with a target 
user population that varies in gender, regional accent, na-
tive language, and age. Moreover, telephone speech is sub-
ject to imperfect transmission quality and background 
noise. For example, the word error rate (WER) for Let’s Go 
Public! (Raux et al., 2005) went from 17% under con-
trolled conditions to 68% in the fielded version.  
 Speech engineering for a specific application can reduce 
WER, but dialogue requires more than perfect transcrip-
tion; it requires both the speaker’s meaning and her intent. 
Once it has recognized the other’s intent, a dialogue par-
ticipant must also respond appropriately. An SDS tries to 
confirm its understanding with the user through the kinds 
of grounding behaviors people use with one another. Repe-
tition of the other’s words, along with a request for agree-
ment, is a traditional form of grounding, albeit annoying in 
an SDS. An SDS that reports, “I HEARD YOU SAY THE 
GRAPES OF WRATH. IS THAT CORRECT?” seeks explicit con-
firmation for its ASR output. Although explicit confirma-
tion guarantees that the ASR transcribed the sound cor-
rectly, it soon annoys the user. Implicit confirmation (e.g., 
“STEINBECK IS A POPULAR AUTHOR”), or even no confirma-
tion at all, makes conversation more habitable. Yet any 
grounding other than explicit confirmation runs the risk 
that the SDS will misunderstand the user, and thereby 
compromise its correctness. 
 Finally, a habitable SDS must understand turn-taking 
behaviors, including when the user wants to interrupt and 
seize the next turn, and when the user is willing to cede the 
current turn. An SDS that allows mixed initiative must still 
rely on simplistic approaches to turn-taking because it can-
not distinguish between a signal that the user is still listen-
ing) and a genuine confirmation. This limits the range of 
grounding behaviors that can be implemented. 

A Traditional SDS Architecture 
Many contemporary SDSs have a pipeline-like architecture 
similar to that of Olympus, shown in Figure 1 (Bohus et al., 
2007; Bohus and Rudnicky, 2003). The person at the left 
provides spoken input. As segments of acoustic data are 

completed, the audio manager (Raux and Eskenazi, 2007) 
forwards them to the ASR module, which transcribes the 
speech segment into a text string of words from its vocabu-
lary. The text string is forwarded to the natural language 
understanding (NLU) module, which produces one or more 
semantic representations of it. The NLU identifies the ob-
jects of interest and their likely values. For example, the 
NLU might identify the string “SAMUEL COLERIDGE” ei-
ther as the title of a biography or as an author, and the 
string “I’D LIKE TO STOP NOW” as either a request to termi-
nate the dialogue or as a book request. Together, the ASR 
and the NLU interpret what has been said.  
 The NLU forwards the semantic representations it con-
structs to a confidence annotator, which scores them. Scor-
ing is based on a variety of knowledge sources, including 
ASR confidence scores on the individual words, and how 
many words could not be included in the semantic interpre-
tation. The highest-scoring interpretation is forwarded to 
the dialog manager, which determines what to do next. A 
strong match to data in a knowledge source supports and 
completes the semantic interpretation. In CheckItOut, the 
system we constructed for the Heiskell task within the 
Olympus framework, the RavenClaw dialogue manager 
may request information from its Domain Reasoner (DR) 
module. CheckItOut’s DR queries a knowledge source 
backend with the semantic representation.  
 CheckItOut relies on Phoenix, a semantic parser for 
NLU that implements a set of context-free grammars 
(CFGs). Because it can omit words in the ASR from the fi-
nal parse, Phoenix is robust to recognition errors. The rules 
for CheckItOut’s book title CFG were automatically pro-
duced from full syntactic parses of Heiskell’s book titles, 
with a broad coverage dependency parser (Bangalore et al., 
2009). Rules modeled on syntactic parses provide linguis-
tically-motivated constraints on word order, parts of 
speech, and constituent structure. They also make mean-
ingful parses that are robust to misrecognized words more 
likely. 
 When the WER is high, the text string passed to the DR 
may match several choices in the backend nearly as well. 
For example, the ASR string “ROLL DWELL” elicited three 
returns: CROMWELL, ROBERT LOWELL, and ROAD TO 
WEALTH. Whether or not it uses the DR, the dialog man-
ager eventually decides what to communicate to the user. 
That decision is forwarded to the natural language genera-
tor (NLG), which uses templates to produce text. For ex-
ample, the dialogue manager might decide to confirm one 
of the titles returned from the database, and the NLG might 
use the template “Did you say x?” to produce “DID YOU 

        
Figure 1: A schematic for Olympus, a traditional SDS architecture.  



SAY ‘ROAD TO WEALTH’?” The text-to-speech (TTS) mod-
ule then transforms the text from the NLG into speech, the 
system’s spoken participation in dialogue.  

Brittle Behaviors from an SDS 
The examples in this section are portions of dialogues from 
CheckItOut, one of 12 research dialogue systems built at 
half a dozen sites using the Olympus/RavenClaw frame-
work. Each of them required the construction of a domain-
specific dialogue task tree to guide its decisions, and a do-
main-specific DR if they accessed a backend database. 
(CheckItOut’s databases detail Heiskell’s books, 
anonymized patrons, and their transaction history). As an 
Olympus/RavenClaw application, CheckItOut also has ac-
cess to domain-independent error handling.  
 Users may order as many as four books, and do so by 
book number, title, or author (for which CheckItOut then 
offers a choice of popular titles). The difficulties Check-
ItOut encounters motivated the metacognitive approach 
that is the focus of this paper. In the examples below, 
CheckItOut’s generated speech appears in italics, with 
punctuation added for clarity. 
Example 1: Too much separation between speech rec-
ognition and semantic processing 
NEXT BOOK? 
 .ALLAN. STEELE 
DID YOU SAY SHELBY STEELE? 
 NO 
I’M SORRY. I MUST HAVE MISUNDERSTOOD YOU. NEXT BOOK? 
 .ALLAN. STEELE 
DID YOU SAY SHELBY STEELE? 
CheckItOut tries to recognize only the intended concept, 
based on the semantic interpretation of the current recogni-
tion hypothesis. The periods indicate low recognition con-
fidence on ALLAN; it does not appear in the semantic inter-
pretation. STEELE parsed as an author name, however, so 
the backend returned the most prolific Steele: Shelby. 
CheckItOut is unaware when a second recognition hy-
pothesis is identical to the first. A metacognitive system 
with the appropriate data structures could respond differ-
ently when user repetition accompanies low confidence in 
recognition. 
Example 2: Inability to backtrack to arbitrary points in 
the dialogue. If the system has misunderstood, users are 
told to respond with “That is not what I said.”  
NEXT BOOK? 
 THAT IS NOT WHAT 
“THIS JUST IN: WHAT I COULDN’T TELL YOU ON TV” IS 
AVAILABLE. 
 THAT IS NOT LITERALLY 
“I’M NOT REALLY HERE” IS AVAILABLE. NEXT BOOK? 
 THAT IS NOT LITERALLY 
I’M SORRY. I THOUGHT YOU SAID, “I’M NOT REALLY HERE,” 
BUT YOU ALREADY ORDERED IT. NEXT BOOK? 
The user now has two books she did not want because the 
“wrong book” signal has been misunderstood three times 
as a title. Now she must either accept the error or start the 

dialogue over. Backtracking to redo a portion of the dia-
logue depends on both knowledge of the specific dialogue 
task structure and on domain-independent knowledge 
about repairing misunderstandings. RavenClaw provides 
domain-independent error handling strategies, and offers 
support for limited restructuring of its agenda. Its DM, 
however, only has limited information about recent utter-
ances. At each step in the pipeline from ASR to NLU to 
DM, information is lost that may have been necessary to 
make good decisions. (For example, the speech rate of the 
utterance is unavailable to the DM.) Here, CheckItOut 
cannot tell whether it has misunderstood the speaker’s 
words (here, recognizing the wrong title) or her intent 
(here, telling CheckItOut that it has made an error).  
Example 3: Inability to perform incremental semantic 
interpretation. In the early part of the dialogue, the sys-
tem identifies a user by her area code and telephone num-
ber. (CheckItOut does not use caller ID.) 
CAN I HAVE THE PHONE NUMBER? 
 NINE NINE FIVE 
SORRY, I DIDN’T UNDERSTAND YOU. 
 SEVEN FOUR THREE THREE 
I’M TRYING TO IDENTIFY YOU. I HAVE YOUR AREA CODE. 
PLEASE SAY YOUR PHONE NUMBER. 
 NINE NINE FIVE SEVEN FOUR 
SORRY, I DIDN’T UNDERSTAND YOU… 
The ASR had captured different portions of the 8-digit 
telephone number. It could have composed the first two re-
sponses, or certainly composed all three, to produce a rea-
sonable (and correct) guess: 995-7433. It cannot, however, 
move incrementally toward an interpretation of the first us-
er utterance. 
Example 4: Over-reliance on sequential processing be-
fore access to domain knowledge. Unlike most spoken 
dialogue systems, CheckItOut relies on voice search. This 
makes it possible to leverage domain knowledge for re-
solving noisy ASR (Passonneau et al., 2010a). In the 
Olympus/RavenClaw architecture, however, NLU precedes 
backend database queries, so CheckItOut applies a variant 
of voice search after parsing. 
 NEXT BOOK? 
 THUD A DEVIL WHERE SPADA 
I DIDN’T UNDERSTAND YOU. PLEASE SAY THE NAME OF THE 
BOOK. 
Here the NLU produced a single interpretation with two 
concepts: a book title beginning “THUD,” and an author 
named SPADA. Neither concept produces a match under 
voice search. If the full text string had been submitted to 
voice search prior to NLU, however, “The Devil Wears 
Prada” would have been returned, correctly.  
 A social system must not only be correct but also con-
sider the impression it makes upon the user. The 
PARADISE framework for dialogue evaluation models 
user satisfaction (measured, for example, by user question-
naires) (Walker, 1997). Its metrics address both task suc-
cess and costs, such as number of turns, number of correc-
tions from the user, and number of rejections by the user. 
By those standards, CheckItOut certainly warrants im-



provement. By its lack of reference to dialogue history and 
its inability to piece information together, CheckItOut ap-
pears inattentive to the conversation as a whole. Because of 
the pipeline, CheckItOut may overlook reasonable alterna-
tives and be unable to retreat to others when its first choice 
fails. The resultant errors frustrate the user and make the 
system brittle. 

Re-envisioning the SDS 
This section envisions an SDS that is responsive to a broad 
range of WERs. The input to this system is knowledge 
from the backends, acoustic energy (speech) from the user, 
and confirmations of speech fragments from the system 
that went uninterrupted. System output is from the TTS. 
 Rather than focus on what it needs from the user to ac-
complish its task, this new system will support the social 
and collaborative nature of dialogue. Rather than box func-
tions into separate modules as in Figure 1, its processes 
may execute in parallel and collaborate with or interrupt 
one another. Like a person, the resultant system will listen 
and interpret at once, anticipate, and process interruptions, 
all to achieve agreements with the user. Here, an agree-
ment binds a value to a variable of interest (e.g., an area 
code), and dialogue is envisioned as exchanges that arrive 
at a set of mutual agreements.  
 Our proposed SDS has metaknowledge about dialogue. 
It knows that it is engaged in dialogue with another 
speaker, and that speakers take turns. It also knows the dia-
logue’s history (record of what has transpired thus far), and 
has an agenda (a pre-specified set of agreements). Each 
agreement may be thought of as a subdialogue, and the 
agenda may be fully or partially ordered. For example, the 
library agenda has agreements for participation in the dia-
logue, user identification, some number of book requests, 
an order summary, and a farewell. The SDS maintains the 
agenda, and represents each agreement as one or more tar-
gets, items on which to agree. For example, the targets for 
the user identification agreement are area code, telephone 
number, name, and address. When all the targets in an 
agreement have been met, the SDS selects another agree-
ment. When the entire agenda has been satisfied, the SDS 
terminates the dialogue. 
 Ideally, a target is satisfied by a single pair of turns, one 
for the SDS and one for the user. For example, the SDS re-
quests an area code and the user provides it; or the user vo-
lunteers an area code, and the SDS knows what to do with 
it. Each turn has an intent (what it tries to convey) and an 
expectation (what it expects to hear). For example, when 
the system requests an area code, its intent is to ask a 
question and its expectation is that it will receive a valid 
one in its database. In turn, when the user says “212,” her 
intent is to provide her area code, and her expectation is 
that the system will understand what she has said. 
 To demonstrate that a social agreement has been 
reached, the SDS must provide evidence to the user of its 
interpretations, and accept evidence from the user of hers. 
(Since it manages the agenda, the SDS always knows its 

own intent and expectation, but it must infer the user’s in-
tent.) After each user turn, the SDS compares its expecta-
tion from its own previous turn to the most recent ASR 
output. When that expectation has been met, the SDS 
grounds the target binding and then selects the next target 
in the agreement. When that expectation is not met, the 
SDS sets aside the agenda until the discrepancy is resolved.  
 Our new SDS, FORRSooth, provides all the functional-
ity of a traditional SDS. In a spirit similar to Olympus, we 
provide modular interfaces for internal components, in-
cluding speech recognizers and synthesizers. In this para-
digm, however, interaction management, recognition, un-
derstanding, confidence, decision making, domain reason-
ing, text generation, and speech production are no longer 
sequential. Instead, they are interleaved with the assistance 
of a cognitively-plausible architecture. 

FORR and FORRSooth 
FORR (FOr the Right Reasons) is a domain-independent, 
architecture for learning and problem solving (Epstein, 
1994). FORR is intended for a domain in which a sequence 
of decisions solves a problem. Robust and effective FORR-
based systems include Hoyle the game learner (Epstein, 
2001), Ariadne the simulated pathfinder (Epstein, 1998), 
and ACE the constraint solver (Epstein, Freuder and 
Wallace, 2005). Each of them is intended for a particular 
domain, such as game playing or pathfinding. FORRSooth 
is a FORR-based SDS, one intended for dialogue. 

Knowledge 
A FORR-based system relies on knowledge to support its 
decision making. In addition to traditional knowledge 
bases (e.g., the backend in CheckItOut), a FORR-based 
program uses descriptives. A descriptive is a shared data 
structure that is computed on demand, refreshed only when 
required, and referenced by one or more reasoning proce-
dures. Some descriptives (e.g., time on task) are computed 
by FORR itself. Most descriptives, however, are domain-
dependent. For the dialogue domain, these include the dia-
logue-specific metaknowledge described above: the dia-
logue history, the agenda, the agreements, their targets, and 
turn-taking. There are also descriptives for text strings 
from the ASR, parses, confidence levels, and backend re-
turns. Others include user satisfaction, system accuracy, 
and computation times. 
 FORR enables FORRSooth to have a set of alternative 
actions under consideration. This permits FORRSooth to 
entertain multiple hypotheses about what the user said si-
multaneously. The agenda determines the kind of actions 
to be considered at any point in the dialogue. For example, 
if FORRSooth has just received confirmation of its current 
expectation, it can choose among a variety of grounding 
actions.  

Decision making 
Another reason that FORRSooth is FORR-based is that it 



is impossible to specify in advance the correct response to 
every user utterance. Instead, FORR combines the output 
from a set of domain-specific procedures called Advisors to 
decide how to respond. Each Advisor embodies a rationale 
for a particular kind of decision: matching, grounding, or 
error handling. Examples appear in Table 1. In Figure 1, 
the dialogue manager made these decisions alone, typically 
with a fixed set of rules or a function learned offline.  
 FORR organizes its Advisors into a 3-tier hierarchy. 
Tier-1 Advisors are reactive and guaranteed to be correct, 
such as Perfect and Implicit-1 in Table 1. Tier-1 Advisors 
relevant to the decision type (matching, grounding, or error 
handling) are consulted in the order specified by the sys-
tem designer.  
 Tier-2 Advisors are situation-based, that is, they respond 
to a pre-specified trigger. For example, in FORRSooth the 
trigger “expectation not met three consecutive times on this 
target” could alert some tier-2 Advisors that manage error 
handling. Once triggered, a tier-2 Advisor may specify a 
(possibly partially ordered) set of targets. Examples in-
clude AlternativeID and Assemble in Table 1.   
 Tier-3 Advisors are heuristics; they are consulted to-
gether and their opinions are combined to produce a deci-
sion. Output from a tier-3 Advisor is a set of comments, 
each of which pairs an action with a strength that indicates 
support for or opposition to that action. Note, for example, 
the variety of rationales in Table 1 that support particular 
backend returns from voice search. An Advisor may pro-
duce any number of comments, each on a different action.  
 When FORRSooth decides to speak, its agenda provides 
the current target to the hierarchy of Advisors, and indi-
cates whether it is time to match or ground. The Advisors 
decide what to say. If any tier-1 Advisor can do so, no fur-
ther Advisors are consulted and that action is taken. For 
example, Implicit-1 might decide to say “WE HAVE THAT.” 
If no tier-1 Advisor determines an action, control moves to 

tier 2. When a triggered tier-2 Advisor produces a set of 
targets (a subdialogue), it includes instructions on when to 
terminate the subdialogue. The system then revises the 
agenda to make the subdialogue its top priority. After any 
such revision, the hierarchy is consulted again from the 
top. The tier-1 Advisor Enforcer ensures appropriate sub-
dialogue execution, suspension, and termination based 
upon instructions embedded in the subdialogue by its tier-2 
creator. Finally, if neither tier 1 nor tier 2 makes a decision, 
control passes to tier 3. Tier-3 Advisors are likely to dis-
agree on what to do. Conflicts among them are resolved by 
voting, which tallies a weighted combination of comment 
strengths for and against each action. The action with the 
highest score is chosen. Advisors’ weights are learned. 
 FORR’s Advisor hierarchy is a highly modular structure. 
It is easy to add Advisors as decision-making rationales are 
identified. (Thus far, the vast majority of FORRSooth’s 
Advisors are dialogue-specific, but not application-
specific, that is, they would serve for applications other 
than the Heiskell Library task.) Moreover, the rationales 
that underlie individual Advisors reflect behaviors we have 
observed when people succeed at a similar task, as de-
scribed in the next section. 

Human Skill Influences SDS Design 
FORRSooth was inspired by behavior observed when peo-
ple matched ASR output to book titles (Passonneau, 
Epstein and Gordon, 2009). Undergraduates were each 
given the ASR that resulted from 50 titles spoken by a sin-
gle individual, along with a text file containing all 71,166 
Heiskell titles. They were asked to match each ASR string 
to a title. There was no time limit, and they could search in 
any way they chose. Despite the fact that only 9% of the ti-
tles were rendered correctly by the ASR, the subjects’ ac-
curacy ranged from 67.7% to 71.7%.  

Table 1: Some of FORRSooth’s Advisors. Only those with an asterisk (*) are specific to the Heiskell Library task. 
 

Tier Advisor Decision type Rationale 
1 Perfect Match ASR string had a perfect match from the backend, so return it. 
1 Implicit-1 Ground ASR string had a perfect match from the backend, so ground implicitly. 
1 Enforcer All If a subdialogue exists, process it. 
1 NoRepeat Error handling Same utterance twice in a row, so do not ask the user to repeat. 
2 Assemble Match > 2 attempts on target, so guess combinations of those responses.  
2 AlternativeID Error handling > 3 consecutive non-understandings, so ask the user for the author or number. 
2 NotWhatSaid Error handling If “that’s not what I said,” reconsider recent variable bindings in reverse order. 
3 Popular Match Select returns from the backend with the highest circulation frequency. 
3 FavoriteGenre Match *Select books with the user’s favorite genre. 
3 FavoriteAuthor Match *Select books by the user’s favorite author. 
3 SoundsLike Match The return sounds like the ASR text string. 
3 SpelledLike Match The return is spelled like the ASR text string. 
3 FirstWord Match The return matches the first word in the ASR text string. 
3 JustMatch Match The return matches the ASR text string. 
3 Parse Match The return matches a parse. 
3 UnusualWord Match The return contains an unusual word in the ASR text string. 
3 Explicit-3 Ground This was difficult to understand, so ground explicitly. 
3 Implicit-3 Ground This dialogue is unusually long, so ground implicitly. 



In a second experiment, we sought to understand the 
mechanism underlying that skill. In this experiment, pairs 
of undergraduate computer science majors spoke Heiskell 
book titles to one another through a speech recognizer. One 
person played the role of user and the other was the sub-
ject. The experiment was designed to make the speech 
more like dialogue than the reading of a list. For further de-
tails, see (Passonneau et al., 2010b). 

The subject sat at a graphical user interface and served 
as the dialogue manager in Figure 1. She could see the 
ASR string and could query the full Heiskell database with 
it. (To evaluate the quality of a match against the ASR, we 
adapted the Ratcliff/Obershelp similarity metric: the ratio r 
of the number of matching characters to the total length of 
both strings (Ratcliff and Metzener, 1988).) Up to 10 
matches, in descending order by (concealed) match score 
were displayed in response to a query. Words in the returns 
that matched a query word appeared darker on the screen. 
The subject was then expected, in real time, to select the ti-
tle that had been requested, ask a question that might help 
her choose, or give up on matching that request. Over sev-
eral weeks, each of the seven subjects requested 100 titles 
from every other subject, 4200 title requests in all.  
 Had a subject simply selected the first (i.e., top-scoring) 
return, she would have been accurate 65% of the time. Our 
subjects’ accuracy, however, ranged from 69.5% to 85.5%. 
To find rationales for our Advisors, we sought the factors 
that supported our subjects’ decisions. We extracted train-
ing samples from the data, and learned decision trees that 
modeled individual subjects’ actions well (0.60 ≤ F ≤ 
0.89). Linear regression and logistic regression models had 
similar results. Key features in these trees will become Ad-
visor rationales: the number and scores of the returns, the 
frequency with which the subject had been correct on the 
last three titles, the maximum number of contiguous exact 
word matches between a return and the ASR string (aver-
aged across candidates), and the Helios confidence score. 
(Confidence scores, metrics on matches, and success on ti-
tles other than the last one did not appear on the GUI.) The 
tree for our top-scoring subject also used the length of the 
ASR string first to choose a decision strategy.   

Metacognition for an SDS 
Our version of the paradigm for metacognition established 
by Cox and Raja (Cox and Raja, 2007) appears in Figure 2. 
Only the speech from the user, the speech from the system, 
and the backend returns lie at the object level. Knowledge 
about that speech, represented as descriptives, supports 
both reasoning at the object level and metareasoning. The 
object layer contains FORRSooth’s Advisors for ground-
ing, matching, and error handling. Grounding strategies 
range from simple confirmations to subdialogues. Based on 
dialogue confidence and history, tier-1 Advisors make fast 
and obvious decisions, tier-2 Advisors propose clarifica-
tion dialogues, and tier-3 Advisors support a specific ac-
tion. In this way, easy choices are made quickly, and diffi-
cult ones take a little longer. 

 FORRSooth has a clear metacognitive orientation, that 
is, it reasons about which decision algorithms to use and 
about its own level of understanding. The metacognitive 
features of our re-envisioned SDS replace the “react to 
speech” paradigm of Figure 1 with “establish a set of mu-
tual agreements.” The comparison of expectation with re-
sponse, and the determination to establish common beliefs 
provide metalevel control that gives error handling priority 
over the establishment of additional agreements.  
 By design, FORRSooth is mixed initiative. Its reactive 
interaction manager mediates between the continuous, real-
time nature of dialogue and the discrete reasoning of the 
Advisors in the object layer. The interaction manager 
transmits utterances between the user and the system. It al-
so updates the descriptive for spoken input when the user 
stops speaking.  
 The second experiment above provided clear evidence 
that a robust SDS requires awareness of both its perform-
ance and its knowledge. For performance, recall that our 
subjects consistently used their recent task success to make 
choices. An SDS should gauge and use its self-confidence, 
as measured by system accuracy and user feedback on the 
last n requests or dialogues. There are many plausible ways 
to integrate self–confidence into Advisors in every cate-
gory. For example, it can be a factor for consideration in 
tier 3, or mandate more caution than would otherwise be 
exercised in tier 1. Metareasoning can also address confi-
dence in individual values. For example, the way a deci-
sion is grounded should depend in part upon the confi-
dence with which the match was made. 

Another form of metacognition is knowing when you do 
not know. This explains the striking difference in the sec-
ond experiment between our two most proficient subjects 
(85.5% and 81.3%) and the other five (69.5% to 73.46%). 
The two more proficient subjects knew when to ask a ques-
tion. When the query returns were all poor matches, these 
two asked questions far more often than the others. 
 Learning is essential in FORRSooth. The system will 
learn weights for its many (likely contradictory) tier-3 Ad-
visors. The weight-learning algorithm will reward Advi-
sors that support good decisions and penalize those that 
make poor ones. Reinforcement size will reflect Advisors’ 
relative success modeled on criteria from PARADISE. In 
FORR, a benchmark Advisor for each kind of action makes 
random comments. Benchmark Advisors do not participate 
in decision-making, but they do acquire learned weights. 
After sufficient experience, FORRSooth will not consult 
any Advisor whose weight remains consistently lower than 
that of its benchmark. 
 FORRSooth has many derived descriptives, but only 

 
 
Figure 2: Metacognition and the FORR architecture. 



three for ground-level information: speech from the user, 
uninterrupted speech from the system, and backend 
matches. Its other descriptives serve the reasoning level 
about what to say next, and support metareasoning about 
the Advisors and how they are organized. These descrip-
tives include the agenda (whose default value is the set of 
agreements and their targets), the task history, and whose 
turn it is to speak, as well as confidence measures, Advisor 
weights, and various computations based on user input and 
the backend data (e.g., possible matches or parses). As 
weights are learned, a descriptive no longer referenced by 
any Advisor is no longer computed. Thus, the SDS gauges 
and exploits the usefulness of its own knowledge and ra-
tionales. 
 A FORR-based system is, by construction, boundedly 
rational. Advisors have a limited amount of time in which 
to construct their comments. FORR gauges their utility 
(accuracy per CPU second consumed). Weight learning 
can then consider utility as well as accuracy. 
 FORRSooth’s dialogue proficiency will be gauged by 
task success and efficiency metrics similar to those of the 
PARADISE framework. The Advisors in Table 1 manage 
the difficulties raised earlier in this paper far better than 
CheckItOut did. NoRepeat addresses Example 1, NotWhat-
Said handles Example 2, and Assemble deals with Example 
3. Once appropriate weights are learned, Example 4 should 
be addressed by JustMatch. 

Related and Future Work 
Mixtures of heuristics have often been shown to enhance 
decision quality when they are weighted (Minton et al., 
1995; Nareyek, 2003) or form a portfolio (Gagliolo and 
Schmidhuber, 2007; Gomes and Selman, 2001; Streeter, 
Golovin and Smith). FORR learns such a mixture, but it 
also learns which knowledge to compute to support it. Fur-
thermore, it can reorganize its Advisors to speed its deci-
sions (Epstein, Freuder and Wallace, 2005).   
 The dialogue manager of Figure 1 is a set of rules (in 
RavenClaw, represented as a tree) that anticipates paths a 
dialogue might take and relies on domain-independent er-
ror-handling protocols (Bohus and Raux, 2009). When the 
dialogue veers away from those predictions, the SDS be-
comes brittle. Rather than anticipate all possibilities, 
FORRSooth expects to learn appropriate behavior. Be-
cause they should impact one another, FORRSooth incor-
porates many functionalities of an SDS in addition to that 
of the traditional dialogue manager.  
 The traditional SDS’s partition of hearing, reasoning, 
and speaking into separate components makes an inte-
grated approach to reasoning and learning more difficult. 
As a result, machine learning has typically been restricted 
to the design phase. For example, some research has 
viewed dialog management as a Partially Observable 
Markov Decision Process, and learned a policy for it by re-
inforcement learning on a corpus (Levin, Pieraccini and 
Eckert, 2000; Williams and Young, 2007). In contrast, 

FORRSooth’s metareasoning allows it to learn weights for 
its tier-3 Advisors online, so that it improves as it is used. 
 ALFRED, a task-oriented dialogue agent, addresses 
miscommunication from ambiguous references, including 
incompatible or contradictory user intentions and unknown 
words (Anderson, Josyula and Perlis, 2003). In contrast, 
FORRSooth manages non-understandings specific to spo-
ken dialogue, particularly those stemming from recognizer 
noise or speech disfluency. Meta-reasoning in ALFRED is 
controlled by a formalism that augments inference rules 
with a constantly evolving measure of time. Knowledge 
about the environment, including perceptions of user utter-
ances and the system’s beliefs about those utterances, are 
represented in an associated knowledge base of first-order 
formulae. In contrast, FORR integrates multiple reasoning 
processes, and represents the passage of time as values for 
historical descriptives. 
 Matching Advisors consider parsing, voice search, and 
dialogue history. In a traditional SDS, the NLU maps the 
words to concepts. In FORRSooth, however, there are mul-
tiple descriptives (e.g., kind of utterance, possible parses, 
dialogue history) that a matching Advisor can reference to 
make a recommendation. (This is analogous to an NLU 
that employs multiple representations, such as (Gupta et 
al., 2006).) The tier-1 matching Advisor Perfect detects a 
perfectly matched title and returns it, without ever parsing. 
A tier-2 matching Advisor might trigger by some failure to 
understand, produce a subdialogue that combines multiple 
hypotheses from the dialogue history, and then ask “Did 
you mean x?” for each of them. A tier-3 matching Advisor 
could consider the number of possible parses or the voice 
search score (or some other rationale) to identify a match. 
 Domain-independent error-handling strategies in Ra-
venClaw have been studied extensively (Bohus, 2007). 
That approach learns a confidence function for concepts 
from labeled training instances, updates its belief in only 
the current concept, and then either confirms the concept or 
repeats the error handling. In FORRSooth, however, we 
expect to record confidence on many descriptives’ values. 
FORRSooth’s error handling includes reactive Tier-1 Ad-
visors (e.g., NoRepeat), tier-2 Advisors that propose clari-
fication dialogues (e.g., AlternativeID), and tier-3 heuris-
tics. Those heuristics may comment to prompt the user to 
repeat or rephrase her last utterance, or select an alternative 
way to request the information. 
 There is deliberately no commitment in FORRSooth to a 
fully-ordered agenda or to fully-ordered targets for an 
agreement. This provides considerable tolerance for mixed 
initiative that might simplify the system’s task. (For exam-
ple, while the system is assembling guesses, the user could 
repeat a title for which the match score is good.) Subdia-
logues are paused and resumed in a similar fashion.  
 FORRSooth is intended to be an SDS, not a book-
ordering system; only its backend and a few of its error-
handling Advisors are domain-specific. Building an SDS in 
FORR allows the system designer to entertain multiple 
heuristic rationales, and permits the system to learn from 
its experience what would be a good combination of them 



for the task at hand. The focus of current development is 
weight learning based on PARADISE metrics, novel ways 
for the system to guess at what a user means (as in the tel-
ephone number of Example 3), and novel error-handling 
subdialogues. Meanwhile, FORRSooth is already proving 
its robustness and habitability in preliminary trials.  
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