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ABSTRACT
This extended abstract briefly describes a new methodology
for shared decision-making in human/multi-robot teams. We
present a new application of FORR, a cognitive architecture
that considers the opinions of others when choosing actions.
While robots in our system ultimately make their own de-
cisions about their actions, they do so based on collective
advice from humans, agents and other robots.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—multiagent systems

General Terms
Theory

Keywords
Multi-robot systems, human-robot interaction

1. INTRODUCTION
This extended abstract summarizes our work on shared

decision-making in human/multi-robot teams. Our work is
in the area of mixed initiative [2, 12] architectures, where
a human operator and one or more robots work share the
task of making decisions about robots’ actions. This mode
of control is in contrast to the other two primary archi-
tectures for human-robot systems [10]: directly controlled,
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where decisions about robots’ actions are made by human
operators; and fully autonomous, where robots make their
own decisions, without input from a human operator. One
well-studied type of mixed-initiative architecture is called
adjustable autonomy. Here, a human-robot system trans-
fers control dynamically, back and forth, between human
and robot [9, 13]. Collaborative control offers a dialog-based
architecture in which decisions are “discussed” and made in
real-time [8]. Another technique uses statistics to infer miss-
ing information in human-robot communication [11].

Our approach is founded on the notion that, while the
robot ultimately makes its own decision about its actions, it
can do so based on advice from a human collaborator, other
robots or (non-embodied) agents. Just as people frequently
make well-considered decisions by asking their friends and
relations for opinions on what car to buy or what job to
take, a robot can also ask opinions of others. We have imple-
mented a human/multiagent/multi-robot framework where
each robot in the system decides on its own actions based on
the opinions of a human operator and a number of agents.

This methodology is based on FORR (FOr the Right Rea-
sons), a cognitively-plausible architecture that models the
development of expertise [3]. FORR is predicated on the the-
ory that good decisions in complex domains are best made
by a mixture of experts, called Advisors. Each Advisor in
FORR is a resource-bounded procedure that represents a
single rationale for decision making. FORR provides a com-
mon knowledge store, represented as a set of descriptives,
that Advisors use in different ways. The FORR architecture
is domain-independent, but the knowledge and procedures it
acquires are domain-specific. To date, FORR has supported
applications for game playing [5], simulated pathfinding [4],
constraint solving [6], and spoken dialogue [7].

We have applied FORR to ourHRTeam framework [14, 15].
HRTeam uses a modular, multiagent architecture to support
shared knowledge amongst agents and to promote shared
decision-making. This implementation represents the first
application of FORR both to a team of agents and to phys-
ical robots.



2. EXPERIMENTAL SETUP
Our experimental testbed models the interior of a build-

ing, with a large space including six rooms and a “hallway”,
in which the robots explore interest points. An experiment
specifies a set of n robots and a set of m interest points; each
interest point is to be visited by some robot. The interest
points can be allocated to individual robots in a number of
ways; our current method uses an auction-based mechanism.
The set of interest points assigned to a given robot is referred
to as that robot’s mission. One at a time, a robot selects
an interest point from its mission and addresses it. On de-
mand, an A* path planner produces a plan for the robot to
reach the selected interest point. This plan is a sequence
of subgoals (i.e., locations as (x, y) coordinates) intended to
move the robot from its current position to its current in-
terest point. Because a plan considers only a single robot,
several robots may interfere along one another’s intended
paths. A simple collision avoidance module recognizes such
a situation and resolves it by pausing some robots until an-
other robot is out of their way. Effectively, unless there is a
need to avoid danger, while its mission remains incomplete,
a robot selects an unachieved interest point from its mission,
constructs and stores a plan to reach that interest point, and
repeatedly selects and moves to subgoals along the plan tra-
jectory until it reaches the selected interest point.

The two main components of the physical setup are the
robots and a global vision system. Our multi-robot team is
comprised of inexpensive, limited-function platforms. We
are currently using the Surveyor SRV-1 Blackfin1, a small
tracked platform equipped with a webcam and 802.11 wire-
less. (See Figure 2.) Because the Blackfin has very limited
on-board processing, our robots rely on off-board process-
ing: each platform is wirelessly tethered to a remote machine
which runs its Robot Controller (i.e., as shown in Figure 2).

The global vision system is comprised of six Logitech C600
Webcams, which are suspended 10 feet above the arena, to
provide an overhead view of the testbed. Each camera’s
field-of-view covers approximately one-sixth of the rectan-
gular arena. Each camera is controlled by a Camera Agent
that employs OpenCV libraries2 [1] to handle image process-
ing. The Camera Agents identify the robots and transmit
their positions (2-dimensional location in global (x, y) arena
coordinates and orientation θ, in degrees) to the Central
Server. They function independently and only broadcast
data to the Central Server; they do not receive any mes-
sages (other than acknowledgement that the messages they
send have been received). Since the robots are identical, the
vision system needs some help to identify them uniquely. To
distinguish between them, each robot is topped by a “hat”,
a white rectangle with a pattern of black dots arranged in
a 2-by-3 grid; each grid square either has a dot or does not.
Each hat is a character from the Braille alphabet3. Exam-
ples appear in Figure 2.

3. APPROACH
Our system architecture (Figure 2) consists of several com-

ponents: a Human Interface, for operator input; the FORR
engine, whose Advisors provide comments; multiple Cam-
era Agents (one per camera) and multiple Robot Controllers

1http://www.surveyor.com/SRV_info.html
2http://opencv.willowgarage.com/wiki/
3http://www.afb.org/section.asp?SectionID=6

Figure 1: Surveyor Blackfin and “Braille Hats”

(one per robot); and a Central Server, which handles com-
munication amongst the system components. For each robot
in the system, a Robot Controller is instantiated that sends
low-level messages to the robot about how to move. The
details of the initial design of our framework have been de-
scribed elsewhere [15]. The new aspect detailed here is the
FORR Engine, outlined in bold in Figure 2.
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Figure 2: System architecture

As mentioned earlier, a FORR-based system uses a set
of Advisors to make decisions. In our implementation, each
Advisor uses its (relatively simple) rationale to produce com-
ments about what the robot should do. A comment is rep-
resented as < a, s, ID >, where ID gives the identity of the
Advisor that provided the comment, a is the action that the
Advisor is commenting on, and s is the numerical strength
(for or against) and intensity of the Advisor’s opinion about
the robot performing action a.

Five possible actions are available to the robot. It can
move(x,y,θ) to location (x, y) with orientation θ. It can
pause(t), i.e., stop moving, until time t and then resume
its plan. It can stop(t) until time t and discard its plan
(which is how “stop” differs from “pause”). It can resume(t),
indicating that the robot should resume the current plan at
time t (where t can be 0 to mean “now”). Finally, it can
do nothing in the current time step, indicated by a noop()
action, and then re-consult the decision-making process.

Two kinds of descriptives are available as input to the
Advisors. Common knowledge is shared by all the robots
and the human, although some agents may have out-of-date
copies of it. Examples include a world map and the num-
ber of robots in the world. Self-knowledge is information
the robot has about itself, including its current position and
orientation, whether it is currently stopped, its current in-
terest point, any plan it has to reach that point, and the
next subgoal in that plan.

FORR organizes its Advisors into a hierarchy of three tiers
and considers each tier in turn, in order to make a decision.
Advisors in tier 1 are“always correct”and are pre-sequenced.
As soon as the first tier-1 Advisor produces a positive com-



ment, its action is forwarded to the Robot Controller and
no further Advisors in any tier are consulted. Advisors in
tier 2 are reactive planners. If no tier-1 Advisor makes a
positive comment and the robot has a current interest point
but no plan, each tier-2 Advisor in turn has the opportunity
to construct a plan for that point. The first plan output by
an Advisor is accepted, and no further Advisors in any tier
are consulted. Finally, if neither tier 1 nor tier 2 makes a
decision, the Advisors in tier 3 combine their comments in a
process called voting that chooses an action based both on
the Advisors’ past reliability and the comments’ strengths.
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Figure 3: FORR Advisors, organized in 3 tiers

The collision-avoidance mechanism and the human team
member are integrated into decision making as Advisors.
HHalt, HWait and HResume are driven by the human oper-
ator. CWait is driven by the collision-avoidance mechanism.
The Advisor sequence in tier 1 is shown in Figure 3. Halt
advocates a stop() action for a robot that is not stopped and
has a current plan, and discards the plan. Wait advocates
a pause() action for a robot that is not stopped and has a
current plan, but leaves the plan in place. Enforce checks
the progress of a robot with respect to its current subgoal;
if it has reached it, Enforce advocates a stop() and marks
the current subgoal as reached and removes it. If the robot
has deviated too far from its current subgoal, Enforce advo-
cates a stop() and removes the current subgoal and possibly
the current interest point. If the robot has a plan but no
current subgoal, Enforce selects a new current subgoal, and
advocates a move() action to it. Hold advocates a no-op for
a robot that has no current subgoal. There is currently only
one tier-2 Advisor, the A* planner, but others are under de-
velopment, including one to return the robot to recharge and
another to circumnavigate an obstruction. Tier-3 Advisors
under development represent rationales like “travel toward
the current interest point” or “move to a central location”.
Control will only reach tier 3 if the robot has no plan (i.e.,
if tier 2 does not make a decision).

4. SUMMARY
We have briefly described our FORR-based method for

shared decision-making in human/multi-robot teams. This
architecture contributes to the collection of mixed-initiative
approaches to human-robot interaction, by providing a new
technique that is different from the standard turn-taking or
negotiated approaches. Our method allows a human and

a number of agents to provide advice to a robot—and the
robot makes its own decision, by considering the input of its
Advisors. Experimentation using this architecture and the
physical setup described is on-going.
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