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Pattern-Based Learning and Spatially-Oriented Concept Formation  
in a Multi-Agent, Decision-Making Expert 

 
Abstract 

As they gain expertise in problem solving, people increasingly rely on patterns and spatially-
oriented reasoning. This paper describes an associative visual pattern classifier and the 
automated acquisition of new, spatially-oriented reasoning agents that simulate such behavior. 
They are incorporated into a multi-agent game-learning program whose architecture robustly 
combines agents with conflicting perspectives. When tested on three games, the visual pattern 
classifier learns meaningful patterns, and the pattern-based, spatially-oriented agents generalized 
from these patterns are generally correct. The accuracy of the contribution of each of the newly 
created agents to the decision-making process is measured against an expert opponent, and a 
perceptron-like algorithm is used to learn game-specific weights for these agents. Much of the 
knowledge encapsulated by the new agents was previously inexpressible in the program’s 
representation and in some cases is not readily deducible from the rules.  

 
1. Pattern learning in game playing 

The thesis of this work is that an associative visual memory and spatially-oriented reasoning 
agents can make significant contributions to programs that do high-level reasoning. We tested 
this approach on two-person, perfect information, finite-board games using a multi-agent game 
playing program as a platform for our experiments. From a pattern-oriented language based on 
small collections of markers, patterns that were persistently associated with wins, losses, and 
draws were stored in a pattern cache. These patterns were used to guide the decision-making of a 
pattern-based agent in the multi-agent game playing program. We then generalized over sets of 
patterns in the pattern cache to create new pattern-based concepts and then proceduralized those 
generalizations as new heuristic agents in the program. Finally, we validated both the agent 
based on the individual patterns and those agents proceduralized from the concepts formed from 
those patterns. This was done with an algorithm that compares their advice with the decisions of 
an expert opponent and weights their contribution to the decision-making process accordingly.  

This approach uses two kinds of pattern-oriented learning for game playing: the association of 
particular patterns with successful or unsuccessful play, and the construction of spatially-oriented 
heuristics from those patterns. Figure 1(a), where the empty locations are blanks and # denotes 
“don’t care,” is an example of the association of an individual pattern with a particular outcome 
of the game. It links a particular pattern from tic-tac-toe with success for X. In any symmetric 
orientation and whatever the # squares contain, a human expert associates such a configuration 
with a win for X.  
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Along with particular patterns, game playing experts use more general but equally salient 

heuristics as spatially-oriented “rules of thumb.” Figure 1(b) is an example of such a pattern-
based concept. It is the spatially-oriented heuristic “reflect O’s move through the center,” proved 
to be optimal play for X in the game of lose tic-tac-toe (Cohen, 1972). Advice from experts on 
how to analyze and play games is repeatedly couched in the language of such spatially-oriented 
patterns. Chess and checkers are discussed in terms of controlling the center of the board, while 
control of the edges is crucial in Othello (Fine, 1989; Gelfer, 1991; Lee and Mahajan, 1990; 
Samuel, 1963). Concepts such as shape and thickness are fundamental to the game of Go (Hideo, 
1992; Iwamoto, 1976; Yoshio, 1991). As people improve their expertise in game playing, they 
increasingly employ spatially-oriented heuristics, and treat them as compiled knowledge, 
integrated but no longer reasoned about.  

To learn pattern associations, programs use a feature language and inductive learning 
algorithms that operate on game states described in that language. There are several chess- 
playing programs that capitalize upon patterns. MACH integrates chunks, identified by human 
master chess players from grandmaster games, into the evaluation function of a chess program 
called Phoenix (George and Schaeffer, 1991). Morph learns threat-and-defense digraphs for 
chess with temporal difference learning and genetic algorithms, and generalizes them, where 
appropriate, as features for its evaluation function (Levinson and Snyder, 1991). HiTech uses 
elaborate hand-coded concepts as part of its evaluation function (Berliner, 1992). CHUNKER 
solves king and pawn endings with equivalence class sets of pawns (Campbell, 1988). Flann’s 
program learns a decision tree of predicate calculus descriptions to classify lost-in-n-ply chess 
positions (Flann, 1992). 

Applying learned patterns to game playing, however, has proved somewhat problematic. There 
are usually a great many of them and matching is non-trivial. T2 and Zenith, for example, 
learned predicate calculus expressions for tic-tac-toe and Othello, respectively (Fawcett and 
Utgoff, 1991; Yee, et al., 1990). On one run T2 learned 45 tic-tac-toe concepts with 52 exception 
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Figure 1: (a) A tic-tac-toe pattern that X associates with winning. # denotes “don’t care.” (b) 
“Reflect through the center,” a spatially-oriented heuristic for lose tic-tac-toe. 
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clauses after 800 contests, a great many for so simple a game. To make its memory tractable, 
Morph limits the number of concepts retained at any moment to 5000. Phoenix made better 
moves with MACH, but used the pattern-based elements in the evaluation function only at the 
root and not at subsequent nodes because it was so time-consuming to search and evaluate the 
pattern-based terms.  

In the work described here, learned pattern knowledge is used to construct higher-order, 
spatially-based reasoning agents. Programs that learn concepts from game-playing experience 
have in the past been hampered by a predicate calculus representation that lacks incisiveness, and 
by exhaustive explanation of inconsistencies for positions that may have no consequence in the 
strategic play of the game (Fawcett and Utgoff, 1991; Yee, et al., 1990). The process we 
describe, in contrast, is able to deal with inconsistencies robustly while it focuses attention on 
those situations containing important visual patterns. Pell deduces higher-order reasoning agents 
from the rules of a game, agents which may or may not be pattern-based(Pell, 1993). In contrast, 
our work induces them from playing experience . 

The major contribution of this work is a system that limits the cost of creating strategically 
meaningful higher order concepts by remembering a limited group of patterns associated with 
wins, losses and draws as a basis for new spatial concepts. We used thresholding, aging and 
consistency mechanisms to filter the cache formation process. The process of creating a 
restricted set of patterns might leave some information out of the learning process. We found, 
however, that the concepts formed were those that are deemed important in published analyses of 
those games that we tested.  

The long-range objective of this work is to create a heuristically-based decision maker that 
learns rapidly enough to participate in intelligent behavior while it is still acquiring knowledge. 
Within a hierarchical multi-agent system the presence of other, more general problem solving 
agents prevents incorrect actions, especially during early experience while learning. In this paper 
we show that the system functioned within this environment. We found that the validation 
process for newly-created agents performed properly, and that the system worked smoothly as 
knowledge was being refined during the learning process. We believe that this process of 
creating new agents and testing their correctness in a multiple-agent program is unique.  

The multi-agent game playing program is detailed in Section 2, the pattern-based learning 
system in Section 3, and the results of our experiments in Section 4. Section 5 discusses the 
results and related work is presented in Section 6. For this initial test of the approach we used 
simple games and made some simplifications in the individual component parts of the program 
and their operation. We discuss these and methods for scaling the approach to more complex 
games in Section 7.  
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2. A game-learning program 
There is evidence that humans integrate a variety of strategies to accomplish problem solving 
(Biswas, et al., 1995; Crowley and Siegler, 1993; Ratterman and Epstein, 1995). For example, 
the primate visual system has pathways for form, place, motion, and color (DeYoe and Van 
Essen, 1988; Ungerleider and Mishkin, 1982). Information from these streams is combined to 
form a perception of the visible world (Kandel, 1991). In addition, it has been found that 
different parts of the brain are activated when decisions are being made about different strategic 
aspects of chess (Nichelli, et al., 1994). 

The mechanisms we describe below simulate these features. Hoyle is a program that learns to 
play two-person, perfect information, finite-board games. It is based on a learning and problem-
solving architecture for skills called FORR, which employs multiple concurrent decision-making 
agents (Epstein, 1994a). Hoyle, as modified here, includes a separate stream for pattern learning.  

current state
acquired useful knowledge

legal moves

Victory

Panic

Enough
Rope

Absolute
decision?

Coverage PatsyShortcutMaterial

Tier 1:
Shallow search and 
inference based on 
perfect knowledge

Tier 2:
Heuristic 
opinions

yes

no

make 
move

…

Blackboard

Voting  
Figure 2: How Hoyle makes decisions.  

 
Hoyle learns to play in competition against a hand-crafted, external expert program for each 

specific new game. As shown in the schematic of Figure 2, whenever it is Hoyle’s turn to move, 
a hierarchy of resource-limited procedures called Advisors is provided with the current game 
state, the legal moves, and any useful knowledge (described below) already acquired about the 
game.  
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Table 1: Hoyle’s Advisors for game playing. 
 
Name 

 
Tier 

 
Description 

Useful 
knowledge 

Learning 
Strategy 

Wiser 1 Makes the correct move if the current state is 
remembered as a certain win. 

Significant states Deduction 

Sadder 1 Resigns if the current state is remembered as a certain 
loss.  

Significant states Deduction 

Victory 1 Makes the winning move from the current state if there 
is one. 

None — 

Don’t Lose 1 Eliminates any move that results in an immediate loss. Significant states Deduction 
Panic 1 Blocks a winning move the non-mover would have if it 

were his turn now. 
Significant states Deduction 

Shortsight 1 Advises for or against moves based on a two-ply 
lookahead. 

Significant states Deduction 

Enough Rope 1 Avoids blocking a losing move the non-mover would 
have if it were his turn now. 
 

None — 

Anthropomorp
h 

2 Moves as a winning or drawing non-Hoyle expert did. Expert moves Abduction 

Candide 2 Formulates and advances naive offensive plans. None — 
Challenge 2 Moves to maximize its number of winning lines or 

minimize the non-mover’s. 
None — 

Coverage 2 Maximizes the mover’s markers’ influence on predrawn 
game board lines or minimizes the non-mover’s. 

None — 

Cyber 2 Moves as a winning or drawing Hoyle did. Important contests Abduction 
Greedy 2 Moves to advance more than one winning line.  None — 
Leery 2 Avoids moves to a state from which a loss occurred, but 

where limited search proved no certain failure. 
Play failure and 
proof failure 

Abduction 

Material 2 Moves to increase the number of its pieces or decrease 
those of the non-mover. 

None — 

Freedom 2 Moves to maximize the number of its subsequent 
immediate moves or minimize those of the non-mover. 

None — 

Not Again 2 Avoids moving as a losing Hoyle did. Important contests Abduction 
Open 2 Recommends previously-observed expert openings.  Opening database Induction 
Patsy 2 Recreates visual patterns credited for positive outcomes 

in play; avoids those blamed for negative ones. 
Visual patterns  Associative 

pattern 
classifier 

Pitchfork 2 Advances offensive forks or destroys defensive ones. Forks EBL 
Shortcut 2 Bisects the shortest paths between pairs of markers of 

the same contestant on predrawn lines. 
None — 

Vulnerable 2 Reduces the non-mover’s capture moves on two-ply 
lookahead.  

None — 

Worried 2 Observes and destroys naive offensive plans of the non-
mover. 

None — 

 
As detailed in Table 1, Hoyle has 23 heuristic, game-independent Advisors in two tiers. (The 

newest, Patsy, is discussed extensively in Section 3.4.1.) The first tier sequentially attempts to 
compute a decision based upon correct knowledge, shallow search, and simple inference, such as 
Victory’s “make a move that wins the contest immediately.” If no single decision is forthcoming, 
then the second tier collectively makes many less reliable recommendations based upon narrow 
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viewpoints, such as Material’s “maximize the number of your markers and minimize the number 
of your opponent’s.” Although this may appear to be quite a few Advisors, they do a large job 
with remarkable efficiency. Hoyle learns to play one game with about 9 million states expertly, 
for example, during exposure to about .012% of the search space, and explicitly retains data on 
only about .006% of the states in the game graph. Based on the Advisors’ recommendations, a 
simple arithmetic vote selects a move that is forwarded to the game-playing algorithm for execu-
tion. Hoyle plays without ever searching more than two ply (one move for each contestant) ahead 
in the game tree.  

Hoyle learns from its experience to make better decisions based on acquired useful knowledge. 
Useful knowledge is expected to be relevant to future play and is probably correct in the full 
context of the game tree. Examples of useful knowledge include recommended openings and 
states from which a win is always achievable with perfect play on both sides. Each item of useful 
knowledge is associated with at least one learning algorithm. The learning methods for useful 
knowledge vary. Table 1 includes Hoyle’s useful knowledge and its associated learning 
strategies. The learning algorithms are highly selective about what they retain; they may 
generalize and they may choose to discard previously acquired knowledge. An Advisor outputs 
its recommendations in the form of comments. A comment is of the form “(Advisor, action, 
strength)” where strength is an integer from 0 to 10 that measures the intensity and direction of 
opinion. Further details on Hoyle are available in (Epstein, 1992). 

 
3. Learning to use and apply patterns 

The crux of this paper is the addition to Hoyle of pattern learning and its application in new, 
game-dependent third-tier Advisors. With only 22 Advisors, the program had already learned to 
play 18 different games extremely well. The implementation of pattern learning and its 
application were inspired by repeated laboratory experiences with people, in the context of many 
different games. College students spoke about, reacted to, and relied upon familiar, sometimes 
symmetrically transposed, patterns while learning (Ratterman and Epstein, 1995). Later, they 
relied heavily upon these patterns as a kind of compiled expertise.  

In this work, visually-perceived regularities are represented as patterns, small geometric 
arrangements of marker types (e.g., black, X) and unoccupied positions (blanks) in a particular 
geographical location. A new useful knowledge object, the associative pattern store, provides a 
heuristically-organized database that links patterns with contest outcome (win, loss, or draw). 
The associative pattern store includes a set of templates, a waiting list, a pattern cache, generated 
concepts, and uninformative patterns.  

Figure 3 provides an overview of the refinement of the pattern matcher and the development of 
pattern-based Advisors from the game-specific associative pattern store. There are four processes 
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detailed here: associate, generalize, proceduralize, and validate. Once patterns are identified, 
they are associated on the waiting list with winning, losing, or drawing. Patterns that persist over 
time and are identified with a single consistent outcome move from the waiting list to the pattern 
cache. Patterns in the cache are proceduralized via an associative pattern classifier, a new, game-
independent Advisor called Patsy. Additional Advisors are created on periodic sweeps through 
the pattern cache to generalize sets of patterns into concepts. Concepts are proceduralized as 
individual, game-specific Advisors that are then validated during subsequent learning. In 
addition, the pattern matcher improves as Hoyle learns to constrain pattern generation by 
excluding uninformative patterns and templates. 

 
Recommended Action

Proceduralize

Gener alize

Game State

Pattern
Waiting List

Associate patterns with outcomes

Validate

1

2

3

4

3

Pattern
Cache

Spatial
Concepts

Patsy
New Spatial

Advisors
AWL

algorithm

Identify patterns

 
Figure 3: A schematic diagram of the pattern-oriented learning system, including refinement of 
the pattern matcher and development of pattern-based Advisors from the game-specific 
associative pattern store.  

 
Much of this paper references morris games, played on boards like those in Figure 4. A morris 

game has two contestants, black and white, each with an equal number of markers. A morris 
contest has two stages: a placing stage, where initially the board is empty, and the contestants 
alternate placing one of their markers on any empty position, and a sliding stage, where a turn 
consists of sliding one’s marker along any line drawn on the game board to an immediately 
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adjacent empty position. A marker may not jump over another marker or be lifted from the board 
during a slide. Three markers of the same color on immediately adjacent positions on a line form 
a mill. Each time a contestant constructs a mill, she captures (removes) one of the other contes-
tant’s markers that is not in a mill. Only if the other contestant’s markers are all in mills, does 
she capture one from a mill. The first contestant reduced to two markers, or unable to move, 
loses. Morris games offer substantial challenges: five men’s morris has about nine million states 
in its search space, nine men’s about 7.7 billion (Gasser, In press). 

 

     
 (a) (b)  (c) 

Figure 4: Some morris boards with (a) 16 positions for five or six men’s morris, and 24 positions 
for (b) nine men’s morris and for (c) 11 men’s morris. Dots appear at the positions where 
markers may be placed. The darkened line segments represent the metric unit used in the 
Bounded Pattern Language described in Section 3.1. 

 
Throughout the implementation, patterns were distinguished by game and by stage, e.g., there 

were separate caches for placing stage moves and sliding stage moves in each game. (Stages 
constitute virtually separate games with their own rules; hence the separate segments of the 
cache for each of them.) The waiting list, pattern cache, concepts, and uninformative patterns 
were represented as hash tables of unlimited size. 

3.1 Constructing a Pattern Based Language  
For purposes of this investigation of simple games, we begin with a set of prespecified, game-
independent, perceptually-biased templates. For larger, more complex games we would expect to 
use a more a sophisticated pattern classifier. One must choose between a complete language 
capable of expressing any pattern along with induction rules that generate many, overly complex 
instances, and an explicitly-biased language that filters potential concepts at the risk of not 
expressing everything. We have chosen the latter for two reasons: because people are known to 
have visual perceptual biases for small geometric groupings (Hendee, 1993; McBurney and 
Collings, 1977) and the implementation of pattern learning and its application were inspired by 
repeated laboratory experiences with people, in the context of many different games (Ratterman 
and Epstein, 1995). While T2’s bias emphasizes moves later in a contest, and Morph’s bias 
emphasizes threat and defense, our bias is toward visual patterns. We do not claim that our bias 
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is better, but we present evidence here that with it we can learn certain kinds of concepts 
inexpressible, or unlikely to be learned, with the other biases.  

BPL (Bounded Pattern Language) is a set of expressions, each of which describes a shape 
delineated by some number of required points. There are five valid expressions in BPL: straight 
lines, squares, diagonals, L’s, and triangles without right angles. Definitions of these expressions 
appear in Table 2. A BPL expression has ?’s in its required positions and #’s in its irrelevant 
(“don’t care”) ones. Each of them, except for diagonals, is constructed only from predrawn 
straight line segments on the game board. For example, a BPL square has ?’s in each of its four 
required corners, and has sides that are already drawn as lines on the game board. The size and 
location of the square are deliberately unspecified. 

Table 2: The valid BPL expressions 

 
To scale such shapes to a game board, a metric is necessary. Let the version of the game board 

drawn for output, as in Figure 4, be called the picture. The metric unit for the game board is the 
smallest Euclidean distance in the picture between any two positions where markers can be 
placed. An example of the board-specific metric unit is darkened for each game board in Figure 
4.  
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 (a) (b)  (c) 

Figure 5: Templates for (a) nine men’s morris and (b) shisima (Zaslavsky 1982). (c) A pattern in 
nine men’s morris. # denotes “don’t care.” 

 
Template type 

 
Required positions 

Optional 
positions 

Predrawn 
lines 

Field of view 
delimits 

Line 2 endpoints and midpoint, if any yes only endpoints 
Square 4 vertices no only diagonal 
Diagonal 2 endpoints yes not 

permitted 
endpoints 

L  3 vertices (forming a right angle) yes only hypotenuse 
Triangle 3 vertices (forming no right angle) yes only  longest side 
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A board-specific template is an elaboration on a BPL description that specifies both the 

location of the shape on the board and the size of the shape in metric units. Thus a template 
highlights certain specific positions on the board with ?’s. (Any other positions it is 
superimposed upon are labeled with the don’t care symbol #.) The BPL square, for example, can 
give rise to three different square templates for the board in Figure 4(b). The template that is 
concentric with the board and whose sides measure 4 metric units is show in Figure 5(a), with 
four #’s on its irrelevant positions.  

Board-specific templates are a function of a game board’s topology, and are calculated only 
once, when Hoyle first encounters a new game. Rather than capture every possible board-
specific template, a single field of view parameter limits a template’s maximum breadth as an 
integer multiple of the game board’s metric unit. Several other board-specific templates are 
shown in Figures 5(a) and 5(b). Field of view must be set to at least 2 for the triangle and the L 
shown in Figure 5(b) to be detected, and at least 3 for the diagonal, and 6 for the square and the 
straight line in Figure 5(a). Templates are unique up to symmetry, so that, for example, there is 
only a single triangle template in Figure 5(b). As a result, there should be relatively few relevant 
templates, even for a game board with a fair number of marker positions. With field of view 4, 
Hoyle generates only 18 templates for the nine men’s morris board in Figure 5(a).  

A pattern specifies a mover and instantiates the ?’s in a board-specific template with blanks 
and the markers of one or both contestants. For example, Figure 5(c) is an example of a pattern 
formed from the nine men’s morris square template in Figure 5(a). It specifies that black is the 
mover and already occupies all the corners of the size-4 square. Each template is matched to a 
game board using any of the eight symmetries of the two-dimensional plane (the identity 
mapping, three rotations, and four reflections).  

3.2 Associate: learn responses for patterns 
The first of the four processes in Figure 3 is the association of responses with the identified 
patterns. The pattern classifier is an algorithm that processes the patterns identified by the board-
specific templates of the preceding section. It associates each pattern with a response, defined as 
a sequence of three integers that count number of contests won by the first contestant, number 
won by the second contestant, and number drawn in which this pattern appeared.  

Most states match one or more templates and therefore make multiple contributions to the 
associative pattern store. For the purposes of this study, we limited pattern learning to at most 
four distinct, crucial states, the two from each stage resulting from each contestant’s last non-
forced move. (Such a state offers the mover more than one legal move and has no immediate 
block to a win the other contestant would have if it were her turn instead.) Our premise is that a 
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state that achieves a goal or subgoal for either player is one that contains key patterns. Such 
states result from significant attention, and, to the extent that the opponent is an expert whose 
move may have been pattern-based, they can offer a particular benefit. Of course, the non-forced 
move states, while not necessarily endgame states, are closely related to them. One could extend 
our procedures to subgoals to provide patterns less oriented to states at the end of each stage. The 
algorithm matches the selected states against the board-specific templates, adjusting for all 8 
symmetries.  

Table 3: Algorithm to learn to associate patterns with outcomes. 

Learn-pattern (pattern, outcome, contest-number) 
Case 1: pattern is in uninformative-patterns 
 exit 
Case 2: pattern is in waiting-list 
 Update pattern’s data, adjusting for frequency and consistency of its   

 association with outcome 
 If pattern appears on waiting list more often than threshold times and has   

 exactly one non-zero response  
  then transfer pattern from waiting list to the pattern cache 
Case 3: pattern is in the cache 
 Update pattern’s data, adjusting for frequency and consistency of its   

 association with outcome 
Otherwise: insert pattern on waiting-list 
 
The patterns detected at the end of each contest are processed one at a time by the pattern-

learning algorithm sketched in Table 3. When it is first identified, a pattern not among the 
uninformative pattern section of the store (see Section 3.3) is relegated to the waiting list, labeled 
with its mover, its contest outcome, and the number of the contest in which it has appeared. For 
example, the first time that the pattern shown in Figure 5(c) is encountered in the placing stage of 
nine men’s morris and associated with a win, the pattern would enter the placing stage waiting 
list for that game with response 1-0-0 (number of times the first contestant has won, lost, and 
drawn with this pattern, respectively), and the contest number in which it appeared. When a 
pattern already on the waiting list is re-encountered, its response values are updated and the new 
contest number is recorded. Thus if the same pattern is encountered again in the placing stage 
and as a win, the pattern’s response is updated to 2-0-0 with that contest number. 

We also age response values by multiplying them by an aging parameter at the end of every 
contest but before any new patterns are processed. A pattern association which does not reappear 
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will eventually be forgotten as its response value eventually reaches effective zero. Thus, one-
time experiences are not retained. There are, of course, one-time experiences worthy of retention. 
These, we argue, are cases, not patterns, and are more appropriately learned by other components 
of the system.  
3.2.1 Managing inconsistency 
Because a novice cannot always capitalize appropriately on its own good patterns or exploit the 
opposition’s poor ones, the learner may initially make incorrect associations, only to find them 
contradicted later when it plays better (Epstein, 1994c). Our learning algorithm therefore 
employs a confidence parameter to revalue responses in the face of disagreeing evidence. If a 
pattern is already in a cache or waiting list, but now arrives with a different non-zero response, 
the previous responses are multiplied by 1- confidence. For example, if a pattern is recorded with 
response 12-0-3 and that pattern (with the same stage and mover) is now processed after a 
contest in which the first contestant lost when the confidence parameter is 0.4, the new response 
would be 7.2, 1, 1.8. At any point in time, confidence is the same for all patterns.  

Initially the confidence parameter c is zero, but it dynamically reflects how well the program 
has played across time. After k contests generating some sequence of wins, losses, and draws, the 
program’s raw confidence in its ability to play well was measured by 

 

[1]  craw = 
outcomei

 k  - i  + 1
!

i = 1

k

 where outcomei = 
+2 for a win in contest i

-2 for a loss in contest i

+1 for a draw in contest i

 

If there were α wins, β losses, and γ draws in the sequence, maximum confidence cmax would 
result from craw computed on the sequence L1L2…LβD1D2…DγW1W2…Wα and minimum 
confidence cmin would result from the sequence W1W2…WαD1D2…DγL1L2…Lβ. Thus 
normalized confidence in [0, 1] is 

[2] c = 
craw - cmin

cmax - cmin

 

3.2.2 Managing consistency 
When a pattern has consistently appeared with the same association, it shifts from the waiting list 
to the pattern cache. There are two criteria for this shift: the pattern must have appeared a certain 
number of times (the threshold parameter) and exactly two of the pattern’s response values must 
effectively be zero. Admittedly, if two patterns appear the same number of times with the same 
associations, the one detected earlier will age its inconsistencies sooner and could thereby 
migrate to the cache sooner. Because pattern learning is presumed to be an ongoing process, we 
do not consider this unreasonable. 

Response values can eventually reach effective zero because they too are multiplied by an 
aging parameter in the same way as the waiting list. Aging for the cache is slower than for the 
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waiting list because it is important to retain salient patterns that are only seen occasionally. If a 
pattern has not occurred for a long time, however, its value diminishes; this is why consistently-
associated patterns must be promoted from the cache to the status of concept. Concepts are not 
aged; corrections to their relevance are based only on new evidence as described in Section 3.5. 

We note that there is refinement of the contents of both the waiting list and pattern cache in 
terms of a threshold to get into the waiting list, aging in both the waiting list and pattern cache, 
and the management of both consistent and inconsistent entries. Although we did not perform a 
quantitative study of this cache refinement process, we did find that without it performance 
degraded. These processes are ongoing and constantly refine the storage of important patterns 
with experience. 

3.3 Generalize: formulate concepts from the associative pattern store 
Cached patterns are a rich source of information about the marker clusters to be seen during a 
particular game. Some of them ought to be forgotten; others are worthy of elevation to concepts 
that drive game-dependent Advisors. The identification of both kinds of patterns is done during a 
periodic sweep of the cache. Currently, the first sweep of the pattern cache to form concepts is 
after 15 contests, and then the frequency is recomputed as a function of the confidence parameter 
after each sweep.  

Some small patterns are identified in every, or almost every, contest of a particular game, 
regardless of its outcome. For example, the pattern consisting of an X at either end of the top lose 
tic-tac-toe row and a blank in the center often occurs when it is O’s turn to move. Almost every 
lose tic-tac-toe contest produces this “X-blank-X in the top row, O to move” pattern, regardless 
of the contest’s outcome. We found such patterns offered no meaningful associations yet were 
costly to process, and have therefore developed a method that learns to avoid their repeated 
consideration. A pattern that appears in almost every contest of a particular game, regardless of 
its outcome, is learned as uninformative. When a pattern is first extracted with a template, it is 
checked against the uninformative patterns first, to see if it warrants further processing. 
Furthermore, if every possible instantiation of a template becomes an uninformative pattern, then 
the template itself is discarded, so that no future pattern observation uses it. 

Generalization summarizes a set of detailed experiences into a more useful and efficient 
representation. Hoyle has two generalization rules to form concepts. Patterns in a cache are said 
to agree when they originate from the same template and pertain to the same stage.  
• Given distinct agreeing patterns P1, P2, and P3 with q ?’s that have the same mover and single, 
non-zero response, and are identical, except that in the ith position P1 has a black, P2 a white, 
and P3 a nil value, construct a new pattern P on the q-1 ?’s other than the ith. An example 
appears in Figure 6(a).  
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• Given distinct agreeing patterns P1 and P2 such that interchanging the contestants’ markers 
and changing the mover in P1 results in P2 with the opposite single non-zero response, construct 
a new pattern P with variable place holders α for black and β for white. An example appears in 
Figure 6(b).  
The cache is organized to support fast detection of agreeing patterns.  

NIL #

!

? ?

? ?

For the template

if P1 is P2 is and P3 is then P is (a)

if P1 is P2 is then P is (b)

For black For white For "

"

"

 
Figure 6: Two generalization rules that are applied to patterns to formulate concepts. 

 

3.4 Proceduralize: convert knowledge into advice 
Proceduralization is the transformation of expert knowledge into expert behavior. This is a non-
trivial task in AI (Mostow, 1983). When there is much data or it conflicts in its potential 
application, as with pattern knowledge, interesting challenges arise. Each segment of the 
associative pattern store therefore relates differently to decision making. Patterns on the waiting 
list have no impact on decision making at all. Patterns in the cache serve as input to the 
associative pattern classifier, Patsy. Pattern-based concepts become game-specific Advisors.  
3.4.1 Patsy, the game-independent, pattern-based Advisor 
The new, game-independent, second-tier Advisor Patsy ranks legal next moves based on the way 
the states they engender match patterns in the cache. Patsy considers the set of possible next 
states resulting from the current legal moves. Each next state is compared with the patterns in the 
appropriate cache. (No new patterns are cached during this process.) Each pattern is assigned a 
value computed by 

[3] 
2 wp - min wp, lp, dp

W
 - 

2 lp - min wp, lp, dp

L
 + 

wp - min wp, lp, dp

D
 

where the response to the pattern p is wp-lp-dp and the total number of won, lost, and drawn 
contests since the pattern was first seen are W, L, and D, respectively. (If any denominator is 0, 
that fraction is omitted from the sum.)  

The strength of Patsy’s comment on each legal next move is a function of the values of the 
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patterns in the state to which it leads. (Matching analyzes the most specific version of a detected 
pattern.) A move that results in a state all of whose cached patterns are wins for the mover (no 
draws or losses) is recommended with strength 10. A move that results in a state all of whose 
cached patterns are losses for the mover (no wins or losses) is recommended with strength 0. 
Otherwise, each move is scored as the sum of the response values computed by (3) for newly-
introduced patterns. Moves with negative pattern scores are recommended with strength 2, 3, or 
4, and moves with positive pattern scores are recommended with strength 6, 7, or 8, depending 
upon their relative ranking. Thus Patsy actively encourages moves that lead to states introducing 
new patterns associated with a win or a draw, while it discourages moves that lead to states 
introducing patterns associated with a loss. As the strength of the associations changes with time 
and experience, Patsy adapts its advice appropriately. 
3.4.2 A set of game-dependent, pattern-based Advisors 
Like most game-playing programs, Hoyle gets into difficulty in the middlegame. It learns 
openings by copying them from its opponents. It learns endgame play by selective retrograde 
analysis, reasoning backward from some of the states experienced during play and storing the 
correct moves along with the significant states (Epstein, 1992). Frequently, however, the 
middlegame gets murky. There may be several dozen legal moves, among which the second-tier 
Advisors see as many as a third as viable alternatives. A traditional game-playing program faces 
a similar situation when it has searched interesting lines to some depth and its evaluation 
function detects no strong preference. A new, pattern-based third tier of game-dependent 
Advisors is designed to resolve middlegame dilemmas. 

Each concept is proceduralized as a new, third-tier, game-specific Advisor. If the perfectly-
correct, game-independent first-tier Advisors can select a move with their game-specific useful 
knowledge, they do so and the second tier is never consulted. If the heuristic but generally 
correct, game-independent second-tier Advisors can agree upon a move with their game-specific 
useful knowledge, they do so. Otherwise the moves judged equally good by the second tier are 
forwarded to the newly-created third tier of game-dependent, pattern-based Advisors. For 
concept C in game G the new GC-Advisor comments only in game G. The GC-Advisor 
advocates any move to a state where a new instance of C is introduced, and opposes any move to 
a state where an instance of C is eliminated, in a comment whose strength is a function of C. In 
the formulation of its comment, GC does not consider the presence or absence of any other 
pattern concepts. 

3.5 Validate: confirm the accuracy of new Advisors 
As new, pattern-based Advisors are introduced and Hoyle’s skill develops further, some of them 
may prove irrelevant, self-contradictory, or untrustworthy, despite prior empirical evidence of 
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their validity. Credit/blame assignment in a domain such as this is extremely difficult. At the end 
of a contest, it is difficult, even for human experts, to pinpoint the move that won or lost. The 
significant decision may have been early in play, or may have been a set of moves rather than an 
individual one. Rather than credit or blame a particular move, we have chosen to credit or blame 
the Advisors that support expert-like behavior.  

Consider, for example, a hypothetical game state in which Hoyle has only second-tier 
comments (Advisor-1, move-1, strength-1) and (Advisor-2, move-2, strength-2). Until now, if 
strength-1 and strength-2 were equal, the vote would be a tie, and one of the moves would have 
been chosen at random. If Advisor-2 were more trustworthy in this particular game, however, its 
comment should have more influence. This approach holds the rationale behind actions 
accountable, rather than the actions themselves. Irrelevant and self-contradictory Advisors in a 
particular game should have weight 0, and more trustworthy Advisors should have higher 
weights than less trustworthy ones. Empirical experience with Hoyle indicates that these weights 
are problem-class specific, i.e., a new item of useful knowledge to be learned.  

With an external model of expertise as its performance criterion, we use a perceptron-like 
model called AWL to learn problem-class-specific weights for the decision-making procedure 
(Epstein, 1994b). Rather than tally each comment of the same strength as equivalent, AWL 
learns game-dependent, stage-dependent weights for all second-tier and third-tier Advisors, so 
that, for example, two comments with the same strength would not necessarily be treated 
equally.  

AWL runs at the end of every contest Hoyle plays against an external (human or computer) 
expert. The algorithm considers, one at a time, only those states in which it was the expert’s turn 
to move and Hoyle’s first tier would not have made a decision. For each such state, AWL 
distinguishes among support and opposition for the expert’s recorded move and for other moves. 
Essentially, Hoyle learns to what extent each of its Advisors simulates expertise, as exemplified 
by the expert’s moves. AWL cumulatively adjusts the weights of second-tier and third-tier 
Advisors at the end of each contest (whether or not the third tier would actually have voted 
during play), and uses those weights to make decisions throughout the subsequent contest. The 
weights are a modification of Littlestone’s perceptron-like algorithm (Littlestone, 1988). 
Updating during play would slow Hoyle down considerably; we massively update the weights at 
the end of each contest instead.  

4. Results 
In all of the experiments described here, Hoyle alternately moved first in one contest and second 
in the next. Such a trial continued until Hoyle was said to have learned to play a game because it 
could draw n consecutive contests in this environment. Once it met this behavioral standard, 
learning was turned off and the program was tested against a variety of challengers that 
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simulated perfect, expert (10% random move selection, 90% perfect), novice (70% random move 
selection, 30% perfect), and random contestants. The threshold parameter, effective zero, the 
aging parameter for the waiting list, and the aging parameter for the cache, all described in 
Section 3, were 5, .01, .9, and .999 respectively. Without contradiction or further reinforcement, 
a single outcome will remain on a waiting list that way for 459 contests, and in the cache for 
4603 contests. All trials included the AWL algorithm of the preceding section (Epstein, 1994b). 
Data for each game is averaged across 10 trials, and examples of consistently learned, pattern-
based concepts for the three games appear in Figures 7, 8, and 9.  

We have used pattern-based learning with Hoyle in tic-tac-toe, lose tic-tac-toe (played exactly 
like tic-tac-toe except that the first contestant to achieve three of the same playing piece along a 
row, column, or diagonal loses), and five men’s morris. Since Hoyle had already learned to play 
all the games studied here expertly after relatively few contests, these experiments were intended 
to demonstrate that game-dependent visual patterns exist and persist, despite the non-
determinism of the learning experience. We found that the potential computational overhead for 
concept formation is avoided because very few of the possible patterns ever appear on the 
waiting list or in the cache. In tic-tac-toe, despite the potentially large number of patterns, after 
learning there were 58 patterns in the waiting list, 22.2 patterns in the cache, 4.2 uninformative 
patterns, and 6.4 concepts, all for draws. In lose tic-tac-toe, with the same potential number of 
patterns, after learning there were 58.8 patterns in the waiting list, 57.2 patterns in the cache, 1.4 
uninformative patterns, and 19 concepts, some for draws and others for losses.  

Hoyle also learned the same pattern-based concepts on every run of a fixed game. This is 
particularly significant because the program is non-deterministic, i.e., its playing experience on 
every run is different. For example, all but the last concept in Figure 7 were learned and 
preserved on all tic-tac-toe runs; the last was learned four times. There are, as one would expect, 
slightly varying numeric responses from one run to the next. In lose tic-tac-toe the top four 
concepts were learned on every run and always appear with the highest weights in the third tier. 

In addition, the Advisor Patsy was highly weighted by the AWL validation algorithm, 
indicating that game-specific pattern-based reasoning performed more like the external expert 
opponent that most of the other game-independent heuristics in the second tier. After learning 
tic-tac-toe, Patsy’s average rank by weight among the Advisors in the second tier was 3 out of 
17; after learning lose tic-tac-toe Patsy’s average rank was 6.5 out of 17. AWL assesses Patsy to 
be a valuable Advisor. The growth in the weight of Patsy and in the weights of the pattern-based 
Advisors simulates the transition from high-level reasoning to skill learning. 

With sufficient experience, Hoyle learns concepts based upon the patterns in the cache, 
concepts found to be correct by our own analysis or from previously published analyses of those 
games. The concept in Figure 7a, for example, describes control of the center. Although it 
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appears to be a simple pattern, it is actually a generalization over a set of persistent patterns. The 
concepts in Figure 7e and 7f advocate blocking an incipient win in the center of a row or on one 
end. 
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Figure 7: Some learned concepts for tic-tac-toe. α and β denote either X or O (or black or white) 
consistently; NIL denotes an empty position. Note that the mover for a concept is in the current 
state, but the pattern is matched for in a subsequent state. 

 
The AWL algorithm functioned properly and was able to unlearn irrelevant or incorrect 

pattern-based concepts. These were created during the period when Hoyle was learning incorrect 
pattern associations based upon novice play. The Advisors proceduralized from the incorrect 
concepts are gradually ignored as their weights decrease below 1. Figures 8c and 8d are 
examples of incorrect pattern-based concepts that Hoyle learned and then gradually rejected 
because they consistently disagreed with the moves of an expert opponent. The irrelevant ones 
are discarded because they fail to comment in any contest after they are created. Figures 8e and 
8f are examples of pattern-based concepts that Hoyle learned and then discarded. 

Furthermore, important concepts are learned that were previously inexpressible in Hoyle's 
representation. An example of this appears in lose tic-tac-toe where, to play the role of X 
perfectly, one must move in the location that is the reflection, through the center, of O’s last 
move. Such reflection was not previously expressible in Hoyle’s useful knowledge, but is now 
learned as the concepts in Figure 8a and 8b. (Note that, with symmetry, all reflections are 
captured.)  

New heuristics are learned which were previously obscured by the manner in which the rules 
were accessed. The program experiences the rules of a game only as a set of “black boxes” that 
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return the current state, the legal moves from it, and whether or not a state results in a win, a loss, 
or a draw. Consider, for example, what we term here confinement, the concept of restricting a 
five men’s morris marker to a corner so that it can no longer slide. (Recall that a morris 
contestant unable to slide loses.) Confinement, the rightmost concept in Figure 9, is learned by 
Hoyle on every run. The concept of a mill (three markers of the same color on immediately 
adjacent positions on a line) was also previously outside the program’s knowledge. (Hoyle only 
knows that certain moves permit it to capture, but not why.) Now on every run of five men’s 
morris, Hoyle learns the first two concepts in Figure 9 as a pair of Advisors that subgoal on 
mills.  
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Figure 8: Some learned concepts for lose tic-tac-toe. α and β denote either X or O (or black or 
white) consistently; NIL denotes an empty position. Note that the mover for a concept is in the 
current state, but the pattern is matched for in a subsequent state. 
 

Hoyle learned tic-tac-toe with a behavioral standard of 10 against an external, expert, game-
specific program that played perfectly. It learned lose tic-tac-toe and five men’s morris, however, 
with a behavioral standard of 20 and lesson and practice training (Epstein, 1994c). In this 
environment (unnecessary for the easier of game tic-tac-toe), the program cycles between lessons 
(a set of two contests against the expert) and practice (a set of seven contests against itself). 
Without lesson and practice training, Hoyle had learned the correct patterns and pattern-based 
concepts for competition against an expert, but lacked the same knowledge for competition 
against less expert players. With lesson and practice training, pattern learning continued on every 
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contest, but AWL was applied only to the lessons, so that Hoyle learned to imitate only the 
expert. The reflection Advisors for lose tic-tac-toe and the mill Advisors for five men’s morris 
have weights that remain among the top few in the third tier during learning with AWL. 
Although the reflection Advisors tend to emerge only after 80 or so contests, they typically 
achieve weights higher than 10 of the 17 second-tier Advisors. 
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Figure 9: Some learned concepts for five men’s morris. α and β denote either X or O (or black 
or white) consistently; NIL denotes an empty position. Note that the mover for a concept is in the 
current state, but the pattern is matched for in a subsequent state.  

 
5. Discussion 

Our work not only integrates pattern learning with high-level reasoning, it also suggests how the 
former gradually comes to support and enhance the latter. We do not advocate reliance on 
pattern-learning alone. That would ignore the other higher-level processes quite evident in 
humans. Indeed, Hoyle learns many other kinds of useful knowledge detailed elsewhere 
(Epstein, 1992). Pattern learning is, however, an important component in skill development, one 
that those interested in the simulation of human intelligence or the design of adaptive game-
playing programs cannot afford to ignore.  

Each of the patterns Hoyle now learns is a generalization over a class of states that occurs with 
some frequency and contains a simple configuration of spatially-related markers. These patterns 
occur in the context of a particular stage of the game and are consistently associated with a single 
outcome. An associative pattern classifier provides learning whose possibly premature guidance 
is tempered by the higher-level reasoning of the other Advisors. More experienced, concept-
based Advisors gradually emerge to emphasize broader generalities, and are expected to 
advocate expert play to retain their status. Finally, the identification and exclusion of 
uninformative patterns constrains the pattern generator and thereby focuses the entire process 
more intelligently. 

In any attempt to replicate this learning model, one must allow enough time for patterns to 
migrate from the waiting list into the cache and to validate the game-dependent Advisors. There 
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is an intricate relationship among the number of contests played, the threshold that keeps patterns 
on the waiting list, and the aging parameters for the waiting list and the cache. For example, 
Hoyle learns tic-tac-toe so quickly with a visual threshold of 2 that it has no opportunity to create 
concepts at all. Although we tested other combinations, the parameter values used here were the 
most successful. 

The choice of these five particular BPL shapes is not central to the theme of this research, but 
was used as a starting point to illustrate the operation of the system. When students in our 
laboratory learn these games, they repeatedly cite small geometric arrangements of pieces as 
salient patterns, much like Simon’s chunks (Chase and Simon, 1973). More complex games will 
require a more complex BPL, for example, one that would include thickness and shape for Go. 
An important problem, however, is to define and test for chunks in a way that minimizes the 
potential combinatoric explosion. In a game with n possible board locations and only t types of 
markers (including blanks), there are tn possible patterns.  

Not all visual patterns, of course, are worth detecting or remembering. If patterns are overly 
specific (e.g., an exact board description) there will be too many of them. If patterns are overly 
general (e.g., a marker in a corner) they may provide little reliable information in the context of 
the game tree. Even when a visual pattern is at the “right” level of specificity, it may not be 
worth noticing (e.g., the patterns in Fig. 8e and 8f) because nothing important is denoted by its 
presence. Statistical pattern recognition also requires adequate experience to render it reliable; in 
an extremely large space that may be impossible. We have employed a variety of devices to limit 
the number of identified patterns: BPL for game-independent template generation with a visual 
bias, normalization for symmetry, and the field of view parameter. Each of them is empirically 
observable in humans and captures certain kinds of regularity detected in their visual system, 
such as the generalization on symmetry and biases toward learning regular and more compact 
patterns (Darley, et al., 1981).  

 
6. Related Work 

6.1 Expert Game Players, Human and Machine 
Psychologists have established, contrary to popular belief, that game-playing experts do not have 
distinctive mental abilities (like exceptional powers of concentration, enormous memories, or 
high IQ’s), that they do not do extensive forward search into the game tree, and that they do not 
rely on statistical measures of typicality or concrete visual images during play (Binet, 1894; 
Charness, 1981; Djakow, et al., 1927; Holding, 1985). What grandmasters do have are perceptual 
focus of attention, carefully organized knowledge, and procedures to manipulate that knowledge. 
They summarize some of their knowledge in concepts, both as verbal memories and as chunks. 
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A grandmaster’s recall is better than an ordinary person’s on chess positions, but only for chess 
positions that are meaningful, i.e., ones that would arise during the play of a contest (Chase and 
Simon, 1973).  

In general, empirical evidence indicates that skilled people in many domains have better 
memories, but only for meaningful patterns, and that, given the same knowledge, an unskilled 
person remains unskilled, i.e., cannot apply it appropriately. (See, for example, (Allard, et al., 
1980; Egan and Schwartz, 1979; Engle and Bukstel, 1978; Shneiderman, 1976).) An expert’s 
memory is organized contextually, so that a single board configuration that could arise in either 
of two different games is chunked and recalled differently, depending upon the game in which it 
is perceived (Eisenstadt and Kareev, 1975). There is also some evidence that a limited amount of 
memory organization may be around prototypes, i.e., that certain situations may be reminiscent 
of others (Goldin, 1978; Watkins, et al., 1984). 

The typical game-playing program, in contrast, plays only one game and does not learn, plan, 
or retain its experience. Instead it uses fast, deep, sophisticated search, and a feature-based 
evaluation function that estimates the strength of any possible game state as a real number (Rich 
and Knight, 1991). It also relies on an opening book of early move sequences favored by human 
experts. Often this is implemented with special-purpose hardware. The programmer selects static 
features that human experts hold in high regard. The tradeoff between the number of nodes 
searched and the time devoted to computation at each node is critical for real-time performance, 
and is well documented in the game-playing literature (Kierulf, 1989; Lee and Mahajan, 1990). 
Large-scale memory for endgames has resulted in strong play for checkers and nine-men’s 
morris; statistics on the success of each previously encountered state have fared less well 
(DeJong and Schultz, 1988; Schaeffer, et al., 1991; Schultz and De Jong, 1988).  

 Cognitive scientists, however, consider this brute force approach not at all reflective of the 
processes they observe in skilled experts. Practical problem-solving and decision-making 
domains offer challenges in scale well beyond most games. Brute-force memory approaches in 
game playing include full-blown retrograde analysis and statistics on how often an encountered 
state is associated with a win. The former overlooks context, and the latter can only be helpful 
when the same states are repeatedly encountered, that is in games where there are few enough 
“typical” states. And both of these mass-memory approaches overlook the AI objective; the 
intent of a game-playing program is to make decisions like an expert, not to know or remember 
exhaustively. Our work moves instead toward Clancey’s “dialectic coupling of sensorimotor 
systems in an ongoing sequence of coordinations” (Clancey, 1993). 

6.2 Pattern-oriented Play 
In AI, visual cues have previously demonstrated their power as explicit search control directives 
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and as hand-selected terms in an evaluation function (Gelernter, 1963; Samuel, 1963). There is 
also evidence that perceptually-based schemas for geometry theorem proving support planning at 
a more abstract level and thereby limit search (Koedinger and Anderson, 1990). Visual imagery, 
as an alternative representation has been addressed in part by Glasgow’s computational imagery, 
but without a procedural component (Glasgow and Papadias, 1992). “Pure” pattern-oriented 
programs learn slowly and tend to be unreliable (Boyan, 1992; Michie, 1974; Painter, 1993). 
Nonetheless, many important game-playing programs have had strong, visually-oriented features 
in their evaluation functions (Kierulf, 1989; Lee and Mahajan, 1990; Samuel, 1963; Samuel, 
1967).  

There is more than one kind of pattern that expert programs detect. Programs that learn 
predicate calculus plans or EBL explanations are slowed by extensive matching time (Fawcett 
and Utgoff, 1991; Freed, 1991; Morales, 1991; Wilkins, 1980; Yee, et al., 1990). The use of 
chunks to focus attention and abstract the chess board has met with some limited success 
(Campbell, 1988; Flann, 1992; George and Schaeffer, 1991). Morph’s tactical patterns are based 
on threat and defense(Levinson and Snyder, 1991). Our work takes a different approach but 
overlaps somewhat with Morph. Inspection of the 12 published patterns learned by a Morph-like 
variant playing tic-tac-toe (Levinson, et al., 1992) shows several that are covered by Hoyle 
Advisors (e.g., Victory, Panic, Open, and Pitchfork). A mill in the morris games is not a Morph-
like pattern, however, nor is symmetry through the center (although the components are). There 
is nothing in the architecture of this system that precludes Morph-like patterns from this 
framework. 

There has been much work on generalization methods for data represented in predicate 
calculus, in rule-based formulations, and numerically, as well as some work on matrix-oriented 
visual perception (Anderson, 1986; DeJong, 1986; Dietterich and Michalski, 1983; Glasgow and 
Papadias, 1992; Kodratoff and Ganascia, 1986; Langley, et al., 1986; Sammut and Banerji, 
1986). Future work will develop additional generalization rules based on these methods.  

 
7. Limitations and Future Work 

For the initial test of this overall approach we used simple games and made a number of 
simplifications in the individual components of the system. Patsy, the Advisor based on 
individual patterns, was placed in Hoyle’s second tier. The correct tier assignment for the new 
Advisors created from pattern-based concepts is another subject of current research. They were 
placed in the third tier for the experiments described here, to avoid interference with a 
preexisting second tier that already worked quite well. To improve computational efficiency, 
however, and to model the transition to automaticity, the pattern-based Advisors should either 
reside in the second tier or gradually migrate to it. Then, if they competed in parallel with the 
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other second-tier Advisors, the pattern-based Advisors should comment much faster in situations 
where they are applicable, and thereby supplant the others. 

Thus far, the AWL algorithm that learns problem-class-specific weights for decision-making 
procedures is interactive; a human is asked “permission” before an Advisor is removed because 
it is irrelevant, self-contradictory, or harmful. We intend to automate this process fully, so that 
Hoyle will once again be a system without human intervention. We are also testing a variety of 
loss bounds for use with AWL (Haussler, et al., 1994; Kivinen and Warmuth, 1994). 

 For the purposes of this study, we limited pattern learning to four states in each contest, two 
from each stage resulting from each contestant’s last non-forced move. These game states near 
the end of the game, or the end of a game stage in the case of the morris games, proved to 
capture significant patterns in these shallow games. Our current research includes more 
sophisticated methods of learning pattern associations. It might be possible to use states 
preceding subgoals to provide patterns in the middle game. We are also experimenting with 
temporal difference learning to consider every pattern as it arises in states throughout a contest 
(Sutton, 1988). 

Future work includes more difficult games and other kinds of templates for spatial relations 
(such as center, edge, perimeter, bounded regions, length, and area), and causally-based pattern 
generation where one or more patterns that give rise to concepts are combined to create new, 
larger, somewhat less regular patterns. We intend to experiment with other learning algorithms to 
determine which is best for our application, and to develop and test a suite of generalization rules 
and meta-rules to construct concepts from patterns, so that, for example, the two reflection 
concepts for lose tic-tac-toe become a single one, as do the two mill concepts for five men’s 
morris.  
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