
Pattern-Based Learning and Spatially-Oriented Concept Formation in
a Multi-Agent, Decision-Making Expert

Susan L. Epstein
Department of Computer Science
Hunter College and The Graduate School of The City University of New York
695 Park Avenue, New York, NY 10021
212-772-5210
epstein@roz.hunter.cuny.edu

Jack Gelfand
Department of Psychology, Green Hall
Princeton University, Princeton, NJ 08544 USA
609-258-2930
jjg@phoenix.princeton.edu

Joanna Lesniak *
Department of Computer Science
Hunter College
695 Park Avenue, New York, NY 10021

* Present address: Department of Computer Science, Rutgers University, New Brunswick, NJ
08903, jlesniak@paul.rutgers.edu.

Keywords: concept formation, game playing, pattern recognition, machine learning, spatially-
oriented reasoning, decision making, Hoyle, morris games.

To appear in Computational Intelligence, 1996

 Page 2

Pattern-Based Learning and Spatially-Oriented Concept Formation
in a Multi-Agent, Decision-Making Expert

Abstract

As they gain expertise in problem solving, people increasingly rely on patterns and spatially-
oriented reasoning. This paper describes an associative visual pattern classifier and the
automated acquisition of new, spatially-oriented reasoning agents that simulate such behavior.
They are incorporated into a multi-agent game-learning program whose architecture robustly
combines agents with conflicting perspectives. When tested on three games, the visual pattern
classifier learns meaningful patterns, and the pattern-based, spatially-oriented agents generalized
from these patterns are generally correct. The accuracy of the contribution of each of the newly
created agents to the decision-making process is measured against an expert opponent, and a
perceptron-like algorithm is used to learn game-specific weights for these agents. Much of the
knowledge encapsulated by the new agents was previously inexpressible in the program’s
representation and in some cases is not readily deducible from the rules.

1. Pattern learning in game playing

The thesis of this work is that an associative visual memory and spatially-oriented reasoning
agents can make significant contributions to programs that do high-level reasoning. We tested
this approach on two-person, perfect information, finite-board games using a multi-agent game
playing program as a platform for our experiments. From a pattern-oriented language based on
small collections of markers, patterns that were persistently associated with wins, losses, and
draws were stored in a pattern cache. These patterns were used to guide the decision-making of a
pattern-based agent in the multi-agent game playing program. We then generalized over sets of
patterns in the pattern cache to create new pattern-based concepts and then proceduralized those
generalizations as new heuristic agents in the program. Finally, we validated both the agent
based on the individual patterns and those agents proceduralized from the concepts formed from
those patterns. This was done with an algorithm that compares their advice with the decisions of
an expert opponent and weights their contribution to the decision-making process accordingly.

This approach uses two kinds of pattern-oriented learning for game playing: the association of
particular patterns with successful or unsuccessful play, and the construction of spatially-oriented
heuristics from those patterns. Figure 1(a), where the empty locations are blanks and # denotes
“don’t care,” is an example of the association of an individual pattern with a particular outcome
of the game. It links a particular pattern from tic-tac-toe with success for X. In any symmetric
orientation and whatever the # squares contain, a human expert associates such a configuration
with a win for X.

 Page 3

Along with particular patterns, game playing experts use more general but equally salient

heuristics as spatially-oriented “rules of thumb.” Figure 1(b) is an example of such a pattern-
based concept. It is the spatially-oriented heuristic “reflect O’s move through the center,” proved
to be optimal play for X in the game of lose tic-tac-toe (Cohen, 1972). Advice from experts on
how to analyze and play games is repeatedly couched in the language of such spatially-oriented
patterns. Chess and checkers are discussed in terms of controlling the center of the board, while
control of the edges is crucial in Othello (Fine, 1989; Gelfer, 1991; Lee and Mahajan, 1990;
Samuel, 1963). Concepts such as shape and thickness are fundamental to the game of Go (Hideo,
1992; Iwamoto, 1976; Yoshio, 1991). As people improve their expertise in game playing, they
increasingly employ spatially-oriented heuristics, and treat them as compiled knowledge,
integrated but no longer reasoned about.

To learn pattern associations, programs use a feature language and inductive learning
algorithms that operate on game states described in that language. There are several chess-
playing programs that capitalize upon patterns. MACH integrates chunks, identified by human
master chess players from grandmaster games, into the evaluation function of a chess program
called Phoenix (George and Schaeffer, 1991). Morph learns threat-and-defense digraphs for
chess with temporal difference learning and genetic algorithms, and generalizes them, where
appropriate, as features for its evaluation function (Levinson and Snyder, 1991). HiTech uses
elaborate hand-coded concepts as part of its evaluation function (Berliner, 1992). CHUNKER
solves king and pawn endings with equivalence class sets of pawns (Campbell, 1988). Flann’s
program learns a decision tree of predicate calculus descriptions to classify lost-in-n-ply chess
positions (Flann, 1992).

Applying learned patterns to game playing, however, has proved somewhat problematic. There
are usually a great many of them and matching is non-trivial. T2 and Zenith, for example,
learned predicate calculus expressions for tic-tac-toe and Othello, respectively (Fawcett and
Utgoff, 1991; Yee, et al., 1990). On one run T2 learned 45 tic-tac-toe concepts with 52 exception

X X

X

#

#

X to move

Go here

X

O

#

#

##

#

X to move X to move

X

O

#

#

##

#

X O

#

##

##

#

or or

 (a) (b)

Figure 1: (a) A tic-tac-toe pattern that X associates with winning. # denotes “don’t care.” (b)
“Reflect through the center,” a spatially-oriented heuristic for lose tic-tac-toe.

 Page 4

clauses after 800 contests, a great many for so simple a game. To make its memory tractable,
Morph limits the number of concepts retained at any moment to 5000. Phoenix made better
moves with MACH, but used the pattern-based elements in the evaluation function only at the
root and not at subsequent nodes because it was so time-consuming to search and evaluate the
pattern-based terms.

In the work described here, learned pattern knowledge is used to construct higher-order,
spatially-based reasoning agents. Programs that learn concepts from game-playing experience
have in the past been hampered by a predicate calculus representation that lacks incisiveness, and
by exhaustive explanation of inconsistencies for positions that may have no consequence in the
strategic play of the game (Fawcett and Utgoff, 1991; Yee, et al., 1990). The process we
describe, in contrast, is able to deal with inconsistencies robustly while it focuses attention on
those situations containing important visual patterns. Pell deduces higher-order reasoning agents
from the rules of a game, agents which may or may not be pattern-based(Pell, 1993). In contrast,
our work induces them from playing experience .

The major contribution of this work is a system that limits the cost of creating strategically
meaningful higher order concepts by remembering a limited group of patterns associated with
wins, losses and draws as a basis for new spatial concepts. We used thresholding, aging and
consistency mechanisms to filter the cache formation process. The process of creating a
restricted set of patterns might leave some information out of the learning process. We found,
however, that the concepts formed were those that are deemed important in published analyses of
those games that we tested.

The long-range objective of this work is to create a heuristically-based decision maker that
learns rapidly enough to participate in intelligent behavior while it is still acquiring knowledge.
Within a hierarchical multi-agent system the presence of other, more general problem solving
agents prevents incorrect actions, especially during early experience while learning. In this paper
we show that the system functioned within this environment. We found that the validation
process for newly-created agents performed properly, and that the system worked smoothly as
knowledge was being refined during the learning process. We believe that this process of
creating new agents and testing their correctness in a multiple-agent program is unique.

The multi-agent game playing program is detailed in Section 2, the pattern-based learning
system in Section 3, and the results of our experiments in Section 4. Section 5 discusses the
results and related work is presented in Section 6. For this initial test of the approach we used
simple games and made some simplifications in the individual component parts of the program
and their operation. We discuss these and methods for scaling the approach to more complex
games in Section 7.

 Page 5

2. A game-learning program
There is evidence that humans integrate a variety of strategies to accomplish problem solving
(Biswas, et al., 1995; Crowley and Siegler, 1993; Ratterman and Epstein, 1995). For example,
the primate visual system has pathways for form, place, motion, and color (DeYoe and Van
Essen, 1988; Ungerleider and Mishkin, 1982). Information from these streams is combined to
form a perception of the visible world (Kandel, 1991). In addition, it has been found that
different parts of the brain are activated when decisions are being made about different strategic
aspects of chess (Nichelli, et al., 1994).

The mechanisms we describe below simulate these features. Hoyle is a program that learns to
play two-person, perfect information, finite-board games. It is based on a learning and problem-
solving architecture for skills called FORR, which employs multiple concurrent decision-making
agents (Epstein, 1994a). Hoyle, as modified here, includes a separate stream for pattern learning.

current state
acquired useful knowledge

legal moves

Victory

Panic

Enough
Rope

Absolute
decision?

Coverage PatsyShortcutMaterial

Tier 1:
Shallow search and
inference based on
perfect knowledge

Tier 2:
Heuristic
opinions

yes

no

make
move

…

Blackboard

Voting
Figure 2: How Hoyle makes decisions.

Hoyle learns to play in competition against a hand-crafted, external expert program for each

specific new game. As shown in the schematic of Figure 2, whenever it is Hoyle’s turn to move,
a hierarchy of resource-limited procedures called Advisors is provided with the current game
state, the legal moves, and any useful knowledge (described below) already acquired about the
game.

 Page 6

Table 1: Hoyle’s Advisors for game playing.

Name

Tier

Description

Useful
knowledge

Learning
Strategy

Wiser 1 Makes the correct move if the current state is
remembered as a certain win.

Significant states Deduction

Sadder 1 Resigns if the current state is remembered as a certain
loss.

Significant states Deduction

Victory 1 Makes the winning move from the current state if there
is one.

None —

Don’t Lose 1 Eliminates any move that results in an immediate loss. Significant states Deduction
Panic 1 Blocks a winning move the non-mover would have if it

were his turn now.
Significant states Deduction

Shortsight 1 Advises for or against moves based on a two-ply
lookahead.

Significant states Deduction

Enough Rope 1 Avoids blocking a losing move the non-mover would
have if it were his turn now.

None —

Anthropomorp
h

2 Moves as a winning or drawing non-Hoyle expert did. Expert moves Abduction

Candide 2 Formulates and advances naive offensive plans. None —
Challenge 2 Moves to maximize its number of winning lines or

minimize the non-mover’s.
None —

Coverage 2 Maximizes the mover’s markers’ influence on predrawn
game board lines or minimizes the non-mover’s.

None —

Cyber 2 Moves as a winning or drawing Hoyle did. Important contests Abduction
Greedy 2 Moves to advance more than one winning line. None —
Leery 2 Avoids moves to a state from which a loss occurred, but

where limited search proved no certain failure.
Play failure and
proof failure

Abduction

Material 2 Moves to increase the number of its pieces or decrease
those of the non-mover.

None —

Freedom 2 Moves to maximize the number of its subsequent
immediate moves or minimize those of the non-mover.

None —

Not Again 2 Avoids moving as a losing Hoyle did. Important contests Abduction
Open 2 Recommends previously-observed expert openings. Opening database Induction
Patsy 2 Recreates visual patterns credited for positive outcomes

in play; avoids those blamed for negative ones.
Visual patterns Associative

pattern
classifier

Pitchfork 2 Advances offensive forks or destroys defensive ones. Forks EBL
Shortcut 2 Bisects the shortest paths between pairs of markers of

the same contestant on predrawn lines.
None —

Vulnerable 2 Reduces the non-mover’s capture moves on two-ply
lookahead.

None —

Worried 2 Observes and destroys naive offensive plans of the non-
mover.

None —

As detailed in Table 1, Hoyle has 23 heuristic, game-independent Advisors in two tiers. (The

newest, Patsy, is discussed extensively in Section 3.4.1.) The first tier sequentially attempts to
compute a decision based upon correct knowledge, shallow search, and simple inference, such as
Victory’s “make a move that wins the contest immediately.” If no single decision is forthcoming,
then the second tier collectively makes many less reliable recommendations based upon narrow

 Page 7

viewpoints, such as Material’s “maximize the number of your markers and minimize the number
of your opponent’s.” Although this may appear to be quite a few Advisors, they do a large job
with remarkable efficiency. Hoyle learns to play one game with about 9 million states expertly,
for example, during exposure to about .012% of the search space, and explicitly retains data on
only about .006% of the states in the game graph. Based on the Advisors’ recommendations, a
simple arithmetic vote selects a move that is forwarded to the game-playing algorithm for execu-
tion. Hoyle plays without ever searching more than two ply (one move for each contestant) ahead
in the game tree.

Hoyle learns from its experience to make better decisions based on acquired useful knowledge.
Useful knowledge is expected to be relevant to future play and is probably correct in the full
context of the game tree. Examples of useful knowledge include recommended openings and
states from which a win is always achievable with perfect play on both sides. Each item of useful
knowledge is associated with at least one learning algorithm. The learning methods for useful
knowledge vary. Table 1 includes Hoyle’s useful knowledge and its associated learning
strategies. The learning algorithms are highly selective about what they retain; they may
generalize and they may choose to discard previously acquired knowledge. An Advisor outputs
its recommendations in the form of comments. A comment is of the form “(Advisor, action,
strength)” where strength is an integer from 0 to 10 that measures the intensity and direction of
opinion. Further details on Hoyle are available in (Epstein, 1992).

3. Learning to use and apply patterns

The crux of this paper is the addition to Hoyle of pattern learning and its application in new,
game-dependent third-tier Advisors. With only 22 Advisors, the program had already learned to
play 18 different games extremely well. The implementation of pattern learning and its
application were inspired by repeated laboratory experiences with people, in the context of many
different games. College students spoke about, reacted to, and relied upon familiar, sometimes
symmetrically transposed, patterns while learning (Ratterman and Epstein, 1995). Later, they
relied heavily upon these patterns as a kind of compiled expertise.

In this work, visually-perceived regularities are represented as patterns, small geometric
arrangements of marker types (e.g., black, X) and unoccupied positions (blanks) in a particular
geographical location. A new useful knowledge object, the associative pattern store, provides a
heuristically-organized database that links patterns with contest outcome (win, loss, or draw).
The associative pattern store includes a set of templates, a waiting list, a pattern cache, generated
concepts, and uninformative patterns.

Figure 3 provides an overview of the refinement of the pattern matcher and the development of
pattern-based Advisors from the game-specific associative pattern store. There are four processes

 Page 8

detailed here: associate, generalize, proceduralize, and validate. Once patterns are identified,
they are associated on the waiting list with winning, losing, or drawing. Patterns that persist over
time and are identified with a single consistent outcome move from the waiting list to the pattern
cache. Patterns in the cache are proceduralized via an associative pattern classifier, a new, game-
independent Advisor called Patsy. Additional Advisors are created on periodic sweeps through
the pattern cache to generalize sets of patterns into concepts. Concepts are proceduralized as
individual, game-specific Advisors that are then validated during subsequent learning. In
addition, the pattern matcher improves as Hoyle learns to constrain pattern generation by
excluding uninformative patterns and templates.

Recommended Action

Proceduralize

Gener alize

Game State

Pattern
Waiting List

Associate patterns with outcomes

Validate

1

2

3

4

3

Pattern
Cache

Spatial
Concepts

Patsy
New Spatial

Advisors
AWL

algorithm

Identify patterns

Figure 3: A schematic diagram of the pattern-oriented learning system, including refinement of
the pattern matcher and development of pattern-based Advisors from the game-specific
associative pattern store.

Much of this paper references morris games, played on boards like those in Figure 4. A morris

game has two contestants, black and white, each with an equal number of markers. A morris
contest has two stages: a placing stage, where initially the board is empty, and the contestants
alternate placing one of their markers on any empty position, and a sliding stage, where a turn
consists of sliding one’s marker along any line drawn on the game board to an immediately

 Page 9

adjacent empty position. A marker may not jump over another marker or be lifted from the board
during a slide. Three markers of the same color on immediately adjacent positions on a line form
a mill. Each time a contestant constructs a mill, she captures (removes) one of the other contes-
tant’s markers that is not in a mill. Only if the other contestant’s markers are all in mills, does
she capture one from a mill. The first contestant reduced to two markers, or unable to move,
loses. Morris games offer substantial challenges: five men’s morris has about nine million states
in its search space, nine men’s about 7.7 billion (Gasser, In press).

 (a) (b) (c)

Figure 4: Some morris boards with (a) 16 positions for five or six men’s morris, and 24 positions
for (b) nine men’s morris and for (c) 11 men’s morris. Dots appear at the positions where
markers may be placed. The darkened line segments represent the metric unit used in the
Bounded Pattern Language described in Section 3.1.

Throughout the implementation, patterns were distinguished by game and by stage, e.g., there

were separate caches for placing stage moves and sliding stage moves in each game. (Stages
constitute virtually separate games with their own rules; hence the separate segments of the
cache for each of them.) The waiting list, pattern cache, concepts, and uninformative patterns
were represented as hash tables of unlimited size.

3.1 Constructing a Pattern Based Language
For purposes of this investigation of simple games, we begin with a set of prespecified, game-
independent, perceptually-biased templates. For larger, more complex games we would expect to
use a more a sophisticated pattern classifier. One must choose between a complete language
capable of expressing any pattern along with induction rules that generate many, overly complex
instances, and an explicitly-biased language that filters potential concepts at the risk of not
expressing everything. We have chosen the latter for two reasons: because people are known to
have visual perceptual biases for small geometric groupings (Hendee, 1993; McBurney and
Collings, 1977) and the implementation of pattern learning and its application were inspired by
repeated laboratory experiences with people, in the context of many different games (Ratterman
and Epstein, 1995). While T2’s bias emphasizes moves later in a contest, and Morph’s bias
emphasizes threat and defense, our bias is toward visual patterns. We do not claim that our bias

 Page 10

is better, but we present evidence here that with it we can learn certain kinds of concepts
inexpressible, or unlikely to be learned, with the other biases.

BPL (Bounded Pattern Language) is a set of expressions, each of which describes a shape
delineated by some number of required points. There are five valid expressions in BPL: straight
lines, squares, diagonals, L’s, and triangles without right angles. Definitions of these expressions
appear in Table 2. A BPL expression has ?’s in its required positions and #’s in its irrelevant
(“don’t care”) ones. Each of them, except for diagonals, is constructed only from predrawn
straight line segments on the game board. For example, a BPL square has ?’s in each of its four
required corners, and has sides that are already drawn as lines on the game board. The size and
location of the square are deliberately unspecified.

Table 2: The valid BPL expressions

To scale such shapes to a game board, a metric is necessary. Let the version of the game board

drawn for output, as in Figure 4, be called the picture. The metric unit for the game board is the
smallest Euclidean distance in the picture between any two positions where markers can be
placed. An example of the board-specific metric unit is darkened for each game board in Figure
4.

square

straight line

diagonal

? ? ?

#

?

? ?

?

?

?

#

#

metric unit

triangle
?

?

?

L

?

?

metric unit

For black

#

#

#

#

 (a) (b) (c)

Figure 5: Templates for (a) nine men’s morris and (b) shisima (Zaslavsky 1982). (c) A pattern in
nine men’s morris. # denotes “don’t care.”

Template type

Required positions

Optional
positions

Predrawn
lines

Field of view
delimits

Line 2 endpoints and midpoint, if any yes only endpoints
Square 4 vertices no only diagonal
Diagonal 2 endpoints yes not

permitted
endpoints

L 3 vertices (forming a right angle) yes only hypotenuse
Triangle 3 vertices (forming no right angle) yes only longest side

 Page 11

A board-specific template is an elaboration on a BPL description that specifies both the

location of the shape on the board and the size of the shape in metric units. Thus a template
highlights certain specific positions on the board with ?’s. (Any other positions it is
superimposed upon are labeled with the don’t care symbol #.) The BPL square, for example, can
give rise to three different square templates for the board in Figure 4(b). The template that is
concentric with the board and whose sides measure 4 metric units is show in Figure 5(a), with
four #’s on its irrelevant positions.

Board-specific templates are a function of a game board’s topology, and are calculated only
once, when Hoyle first encounters a new game. Rather than capture every possible board-
specific template, a single field of view parameter limits a template’s maximum breadth as an
integer multiple of the game board’s metric unit. Several other board-specific templates are
shown in Figures 5(a) and 5(b). Field of view must be set to at least 2 for the triangle and the L
shown in Figure 5(b) to be detected, and at least 3 for the diagonal, and 6 for the square and the
straight line in Figure 5(a). Templates are unique up to symmetry, so that, for example, there is
only a single triangle template in Figure 5(b). As a result, there should be relatively few relevant
templates, even for a game board with a fair number of marker positions. With field of view 4,
Hoyle generates only 18 templates for the nine men’s morris board in Figure 5(a).

A pattern specifies a mover and instantiates the ?’s in a board-specific template with blanks
and the markers of one or both contestants. For example, Figure 5(c) is an example of a pattern
formed from the nine men’s morris square template in Figure 5(a). It specifies that black is the
mover and already occupies all the corners of the size-4 square. Each template is matched to a
game board using any of the eight symmetries of the two-dimensional plane (the identity
mapping, three rotations, and four reflections).

3.2 Associate: learn responses for patterns
The first of the four processes in Figure 3 is the association of responses with the identified
patterns. The pattern classifier is an algorithm that processes the patterns identified by the board-
specific templates of the preceding section. It associates each pattern with a response, defined as
a sequence of three integers that count number of contests won by the first contestant, number
won by the second contestant, and number drawn in which this pattern appeared.

Most states match one or more templates and therefore make multiple contributions to the
associative pattern store. For the purposes of this study, we limited pattern learning to at most
four distinct, crucial states, the two from each stage resulting from each contestant’s last non-
forced move. (Such a state offers the mover more than one legal move and has no immediate
block to a win the other contestant would have if it were her turn instead.) Our premise is that a

 Page 12

state that achieves a goal or subgoal for either player is one that contains key patterns. Such
states result from significant attention, and, to the extent that the opponent is an expert whose
move may have been pattern-based, they can offer a particular benefit. Of course, the non-forced
move states, while not necessarily endgame states, are closely related to them. One could extend
our procedures to subgoals to provide patterns less oriented to states at the end of each stage. The
algorithm matches the selected states against the board-specific templates, adjusting for all 8
symmetries.

Table 3: Algorithm to learn to associate patterns with outcomes.

Learn-pattern (pattern, outcome, contest-number)
Case 1: pattern is in uninformative-patterns
 exit
Case 2: pattern is in waiting-list
 Update pattern’s data, adjusting for frequency and consistency of its

 association with outcome
 If pattern appears on waiting list more often than threshold times and has

 exactly one non-zero response
 then transfer pattern from waiting list to the pattern cache
Case 3: pattern is in the cache
 Update pattern’s data, adjusting for frequency and consistency of its

 association with outcome
Otherwise: insert pattern on waiting-list

The patterns detected at the end of each contest are processed one at a time by the pattern-

learning algorithm sketched in Table 3. When it is first identified, a pattern not among the
uninformative pattern section of the store (see Section 3.3) is relegated to the waiting list, labeled
with its mover, its contest outcome, and the number of the contest in which it has appeared. For
example, the first time that the pattern shown in Figure 5(c) is encountered in the placing stage of
nine men’s morris and associated with a win, the pattern would enter the placing stage waiting
list for that game with response 1-0-0 (number of times the first contestant has won, lost, and
drawn with this pattern, respectively), and the contest number in which it appeared. When a
pattern already on the waiting list is re-encountered, its response values are updated and the new
contest number is recorded. Thus if the same pattern is encountered again in the placing stage
and as a win, the pattern’s response is updated to 2-0-0 with that contest number.

We also age response values by multiplying them by an aging parameter at the end of every
contest but before any new patterns are processed. A pattern association which does not reappear

 Page 13

will eventually be forgotten as its response value eventually reaches effective zero. Thus, one-
time experiences are not retained. There are, of course, one-time experiences worthy of retention.
These, we argue, are cases, not patterns, and are more appropriately learned by other components
of the system.
3.2.1 Managing inconsistency
Because a novice cannot always capitalize appropriately on its own good patterns or exploit the
opposition’s poor ones, the learner may initially make incorrect associations, only to find them
contradicted later when it plays better (Epstein, 1994c). Our learning algorithm therefore
employs a confidence parameter to revalue responses in the face of disagreeing evidence. If a
pattern is already in a cache or waiting list, but now arrives with a different non-zero response,
the previous responses are multiplied by 1- confidence. For example, if a pattern is recorded with
response 12-0-3 and that pattern (with the same stage and mover) is now processed after a
contest in which the first contestant lost when the confidence parameter is 0.4, the new response
would be 7.2, 1, 1.8. At any point in time, confidence is the same for all patterns.

Initially the confidence parameter c is zero, but it dynamically reflects how well the program
has played across time. After k contests generating some sequence of wins, losses, and draws, the
program’s raw confidence in its ability to play well was measured by

[1] craw =
outcomei

 k - i + 1
!

i = 1

k

 where outcomei =
+2 for a win in contest i

-2 for a loss in contest i

+1 for a draw in contest i

If there were α wins, β losses, and γ draws in the sequence, maximum confidence cmax would
result from craw computed on the sequence L1L2…LβD1D2…DγW1W2…Wα and minimum
confidence cmin would result from the sequence W1W2…WαD1D2…DγL1L2…Lβ. Thus
normalized confidence in [0, 1] is

[2] c =
craw - cmin

cmax - cmin

3.2.2 Managing consistency
When a pattern has consistently appeared with the same association, it shifts from the waiting list
to the pattern cache. There are two criteria for this shift: the pattern must have appeared a certain
number of times (the threshold parameter) and exactly two of the pattern’s response values must
effectively be zero. Admittedly, if two patterns appear the same number of times with the same
associations, the one detected earlier will age its inconsistencies sooner and could thereby
migrate to the cache sooner. Because pattern learning is presumed to be an ongoing process, we
do not consider this unreasonable.

Response values can eventually reach effective zero because they too are multiplied by an
aging parameter in the same way as the waiting list. Aging for the cache is slower than for the

 Page 14

waiting list because it is important to retain salient patterns that are only seen occasionally. If a
pattern has not occurred for a long time, however, its value diminishes; this is why consistently-
associated patterns must be promoted from the cache to the status of concept. Concepts are not
aged; corrections to their relevance are based only on new evidence as described in Section 3.5.

We note that there is refinement of the contents of both the waiting list and pattern cache in
terms of a threshold to get into the waiting list, aging in both the waiting list and pattern cache,
and the management of both consistent and inconsistent entries. Although we did not perform a
quantitative study of this cache refinement process, we did find that without it performance
degraded. These processes are ongoing and constantly refine the storage of important patterns
with experience.

3.3 Generalize: formulate concepts from the associative pattern store
Cached patterns are a rich source of information about the marker clusters to be seen during a
particular game. Some of them ought to be forgotten; others are worthy of elevation to concepts
that drive game-dependent Advisors. The identification of both kinds of patterns is done during a
periodic sweep of the cache. Currently, the first sweep of the pattern cache to form concepts is
after 15 contests, and then the frequency is recomputed as a function of the confidence parameter
after each sweep.

Some small patterns are identified in every, or almost every, contest of a particular game,
regardless of its outcome. For example, the pattern consisting of an X at either end of the top lose
tic-tac-toe row and a blank in the center often occurs when it is O’s turn to move. Almost every
lose tic-tac-toe contest produces this “X-blank-X in the top row, O to move” pattern, regardless
of the contest’s outcome. We found such patterns offered no meaningful associations yet were
costly to process, and have therefore developed a method that learns to avoid their repeated
consideration. A pattern that appears in almost every contest of a particular game, regardless of
its outcome, is learned as uninformative. When a pattern is first extracted with a template, it is
checked against the uninformative patterns first, to see if it warrants further processing.
Furthermore, if every possible instantiation of a template becomes an uninformative pattern, then
the template itself is discarded, so that no future pattern observation uses it.

Generalization summarizes a set of detailed experiences into a more useful and efficient
representation. Hoyle has two generalization rules to form concepts. Patterns in a cache are said
to agree when they originate from the same template and pertain to the same stage.
• Given distinct agreeing patterns P1, P2, and P3 with q ?’s that have the same mover and single,
non-zero response, and are identical, except that in the ith position P1 has a black, P2 a white,
and P3 a nil value, construct a new pattern P on the q-1 ?’s other than the ith. An example
appears in Figure 6(a).

 Page 15

• Given distinct agreeing patterns P1 and P2 such that interchanging the contestants’ markers
and changing the mover in P1 results in P2 with the opposite single non-zero response, construct
a new pattern P with variable place holders α for black and β for white. An example appears in
Figure 6(b).
The cache is organized to support fast detection of agreeing patterns.

NIL #

!

? ?

? ?

For the template

if P1 is P2 is and P3 is then P is (a)

if P1 is P2 is then P is (b)

For black For white For "

"

"

Figure 6: Two generalization rules that are applied to patterns to formulate concepts.

3.4 Proceduralize: convert knowledge into advice
Proceduralization is the transformation of expert knowledge into expert behavior. This is a non-
trivial task in AI (Mostow, 1983). When there is much data or it conflicts in its potential
application, as with pattern knowledge, interesting challenges arise. Each segment of the
associative pattern store therefore relates differently to decision making. Patterns on the waiting
list have no impact on decision making at all. Patterns in the cache serve as input to the
associative pattern classifier, Patsy. Pattern-based concepts become game-specific Advisors.
3.4.1 Patsy, the game-independent, pattern-based Advisor
The new, game-independent, second-tier Advisor Patsy ranks legal next moves based on the way
the states they engender match patterns in the cache. Patsy considers the set of possible next
states resulting from the current legal moves. Each next state is compared with the patterns in the
appropriate cache. (No new patterns are cached during this process.) Each pattern is assigned a
value computed by

[3]
2 wp - min wp, lp, dp

W
 -

2 lp - min wp, lp, dp

L
 +

wp - min wp, lp, dp

D

where the response to the pattern p is wp-lp-dp and the total number of won, lost, and drawn
contests since the pattern was first seen are W, L, and D, respectively. (If any denominator is 0,
that fraction is omitted from the sum.)

The strength of Patsy’s comment on each legal next move is a function of the values of the

 Page 16

patterns in the state to which it leads. (Matching analyzes the most specific version of a detected
pattern.) A move that results in a state all of whose cached patterns are wins for the mover (no
draws or losses) is recommended with strength 10. A move that results in a state all of whose
cached patterns are losses for the mover (no wins or losses) is recommended with strength 0.
Otherwise, each move is scored as the sum of the response values computed by (3) for newly-
introduced patterns. Moves with negative pattern scores are recommended with strength 2, 3, or
4, and moves with positive pattern scores are recommended with strength 6, 7, or 8, depending
upon their relative ranking. Thus Patsy actively encourages moves that lead to states introducing
new patterns associated with a win or a draw, while it discourages moves that lead to states
introducing patterns associated with a loss. As the strength of the associations changes with time
and experience, Patsy adapts its advice appropriately.
3.4.2 A set of game-dependent, pattern-based Advisors
Like most game-playing programs, Hoyle gets into difficulty in the middlegame. It learns
openings by copying them from its opponents. It learns endgame play by selective retrograde
analysis, reasoning backward from some of the states experienced during play and storing the
correct moves along with the significant states (Epstein, 1992). Frequently, however, the
middlegame gets murky. There may be several dozen legal moves, among which the second-tier
Advisors see as many as a third as viable alternatives. A traditional game-playing program faces
a similar situation when it has searched interesting lines to some depth and its evaluation
function detects no strong preference. A new, pattern-based third tier of game-dependent
Advisors is designed to resolve middlegame dilemmas.

Each concept is proceduralized as a new, third-tier, game-specific Advisor. If the perfectly-
correct, game-independent first-tier Advisors can select a move with their game-specific useful
knowledge, they do so and the second tier is never consulted. If the heuristic but generally
correct, game-independent second-tier Advisors can agree upon a move with their game-specific
useful knowledge, they do so. Otherwise the moves judged equally good by the second tier are
forwarded to the newly-created third tier of game-dependent, pattern-based Advisors. For
concept C in game G the new GC-Advisor comments only in game G. The GC-Advisor
advocates any move to a state where a new instance of C is introduced, and opposes any move to
a state where an instance of C is eliminated, in a comment whose strength is a function of C. In
the formulation of its comment, GC does not consider the presence or absence of any other
pattern concepts.

3.5 Validate: confirm the accuracy of new Advisors
As new, pattern-based Advisors are introduced and Hoyle’s skill develops further, some of them
may prove irrelevant, self-contradictory, or untrustworthy, despite prior empirical evidence of

 Page 17

their validity. Credit/blame assignment in a domain such as this is extremely difficult. At the end
of a contest, it is difficult, even for human experts, to pinpoint the move that won or lost. The
significant decision may have been early in play, or may have been a set of moves rather than an
individual one. Rather than credit or blame a particular move, we have chosen to credit or blame
the Advisors that support expert-like behavior.

Consider, for example, a hypothetical game state in which Hoyle has only second-tier
comments (Advisor-1, move-1, strength-1) and (Advisor-2, move-2, strength-2). Until now, if
strength-1 and strength-2 were equal, the vote would be a tie, and one of the moves would have
been chosen at random. If Advisor-2 were more trustworthy in this particular game, however, its
comment should have more influence. This approach holds the rationale behind actions
accountable, rather than the actions themselves. Irrelevant and self-contradictory Advisors in a
particular game should have weight 0, and more trustworthy Advisors should have higher
weights than less trustworthy ones. Empirical experience with Hoyle indicates that these weights
are problem-class specific, i.e., a new item of useful knowledge to be learned.

With an external model of expertise as its performance criterion, we use a perceptron-like
model called AWL to learn problem-class-specific weights for the decision-making procedure
(Epstein, 1994b). Rather than tally each comment of the same strength as equivalent, AWL
learns game-dependent, stage-dependent weights for all second-tier and third-tier Advisors, so
that, for example, two comments with the same strength would not necessarily be treated
equally.

AWL runs at the end of every contest Hoyle plays against an external (human or computer)
expert. The algorithm considers, one at a time, only those states in which it was the expert’s turn
to move and Hoyle’s first tier would not have made a decision. For each such state, AWL
distinguishes among support and opposition for the expert’s recorded move and for other moves.
Essentially, Hoyle learns to what extent each of its Advisors simulates expertise, as exemplified
by the expert’s moves. AWL cumulatively adjusts the weights of second-tier and third-tier
Advisors at the end of each contest (whether or not the third tier would actually have voted
during play), and uses those weights to make decisions throughout the subsequent contest. The
weights are a modification of Littlestone’s perceptron-like algorithm (Littlestone, 1988).
Updating during play would slow Hoyle down considerably; we massively update the weights at
the end of each contest instead.

4. Results
In all of the experiments described here, Hoyle alternately moved first in one contest and second
in the next. Such a trial continued until Hoyle was said to have learned to play a game because it
could draw n consecutive contests in this environment. Once it met this behavioral standard,
learning was turned off and the program was tested against a variety of challengers that

 Page 18

simulated perfect, expert (10% random move selection, 90% perfect), novice (70% random move
selection, 30% perfect), and random contestants. The threshold parameter, effective zero, the
aging parameter for the waiting list, and the aging parameter for the cache, all described in
Section 3, were 5, .01, .9, and .999 respectively. Without contradiction or further reinforcement,
a single outcome will remain on a waiting list that way for 459 contests, and in the cache for
4603 contests. All trials included the AWL algorithm of the preceding section (Epstein, 1994b).
Data for each game is averaged across 10 trials, and examples of consistently learned, pattern-
based concepts for the three games appear in Figures 7, 8, and 9.

We have used pattern-based learning with Hoyle in tic-tac-toe, lose tic-tac-toe (played exactly
like tic-tac-toe except that the first contestant to achieve three of the same playing piece along a
row, column, or diagonal loses), and five men’s morris. Since Hoyle had already learned to play
all the games studied here expertly after relatively few contests, these experiments were intended
to demonstrate that game-dependent visual patterns exist and persist, despite the non-
determinism of the learning experience. We found that the potential computational overhead for
concept formation is avoided because very few of the possible patterns ever appear on the
waiting list or in the cache. In tic-tac-toe, despite the potentially large number of patterns, after
learning there were 58 patterns in the waiting list, 22.2 patterns in the cache, 4.2 uninformative
patterns, and 6.4 concepts, all for draws. In lose tic-tac-toe, with the same potential number of
patterns, after learning there were 58.8 patterns in the waiting list, 57.2 patterns in the cache, 1.4
uninformative patterns, and 19 concepts, some for draws and others for losses.

Hoyle also learned the same pattern-based concepts on every run of a fixed game. This is
particularly significant because the program is non-deterministic, i.e., its playing experience on
every run is different. For example, all but the last concept in Figure 7 were learned and
preserved on all tic-tac-toe runs; the last was learned four times. There are, as one would expect,
slightly varying numeric responses from one run to the next. In lose tic-tac-toe the top four
concepts were learned on every run and always appear with the highest weights in the third tier.

In addition, the Advisor Patsy was highly weighted by the AWL validation algorithm,
indicating that game-specific pattern-based reasoning performed more like the external expert
opponent that most of the other game-independent heuristics in the second tier. After learning
tic-tac-toe, Patsy’s average rank by weight among the Advisors in the second tier was 3 out of
17; after learning lose tic-tac-toe Patsy’s average rank was 6.5 out of 17. AWL assesses Patsy to
be a valuable Advisor. The growth in the weight of Patsy and in the weights of the pattern-based
Advisors simulates the transition from high-level reasoning to skill learning.

With sufficient experience, Hoyle learns concepts based upon the patterns in the cache,
concepts found to be correct by our own analysis or from previously published analyses of those
games. The concept in Figure 7a, for example, describes control of the center. Although it

 Page 19

appears to be a simple pattern, it is actually a generalization over a set of persistent patterns. The
concepts in Figure 7e and 7f advocate blocking an incipient win in the center of a row or on one
end.

For X

X

#

#

#

#

#

#

#

#

#

#

#

#

#

! " #

 For !

 For

#

!

#

#

#

#

#

#"

!

 (a) (b) (c)

#

#

#

#

#

#

! " #

 For "

#

!

#

#

"

#

#

"

#

 For !

#

#

#

#

#

#

! " "

 For !

 (d) (e) (f)

Figure 7: Some learned concepts for tic-tac-toe. α and β denote either X or O (or black or white)
consistently; NIL denotes an empty position. Note that the mover for a concept is in the current
state, but the pattern is matched for in a subsequent state.

The AWL algorithm functioned properly and was able to unlearn irrelevant or incorrect

pattern-based concepts. These were created during the period when Hoyle was learning incorrect
pattern associations based upon novice play. The Advisors proceduralized from the incorrect
concepts are gradually ignored as their weights decrease below 1. Figures 8c and 8d are
examples of incorrect pattern-based concepts that Hoyle learned and then gradually rejected
because they consistently disagreed with the moves of an expert opponent. The irrelevant ones
are discarded because they fail to comment in any contest after they are created. Figures 8e and
8f are examples of pattern-based concepts that Hoyle learned and then discarded.

Furthermore, important concepts are learned that were previously inexpressible in Hoyle's
representation. An example of this appears in lose tic-tac-toe where, to play the role of X
perfectly, one must move in the location that is the reflection, through the center, of O’s last
move. Such reflection was not previously expressible in Hoyle’s useful knowledge, but is now
learned as the concepts in Figure 8a and 8b. (Note that, with symmetry, all reflections are
captured.)

New heuristics are learned which were previously obscured by the manner in which the rules
were accessed. The program experiences the rules of a game only as a set of “black boxes” that

 Page 20

return the current state, the legal moves from it, and whether or not a state results in a win, a loss,
or a draw. Consider, for example, what we term here confinement, the concept of restricting a
five men’s morris marker to a corner so that it can no longer slide. (Recall that a morris
contestant unable to slide loses.) Confinement, the rightmost concept in Figure 9, is learned by
Hoyle on every run. The concept of a mill (three markers of the same color on immediately
adjacent positions on a line) was also previously outside the program’s knowledge. (Hoyle only
knows that certain moves permit it to capture, but not why.) Now on every run of five men’s
morris, Hoyle learns the first two concepts in Figure 9 as a pair of Advisors that subgoal on
mills.

 Correct reflection concept

#

#

#

#

!

#

#

#

"

For "

#

#

#

!

#

#

#"

For "

 (a) (b)

 Found to be incorrect Found to be irrelevant

For

#

#

#

#

#

!

#

!

NIL #

#

#

#

#

#

!

#

NIL #

For !

#

#

#

!

#

#

!

#

#

For "

#

#

#

!

#

#

!

#

#

For "

 (c) (d) (e) (f)
Figure 8: Some learned concepts for lose tic-tac-toe. α and β denote either X or O (or black or
white) consistently; NIL denotes an empty position. Note that the mover for a concept is in the
current state, but the pattern is matched for in a subsequent state.

Hoyle learned tic-tac-toe with a behavioral standard of 10 against an external, expert, game-
specific program that played perfectly. It learned lose tic-tac-toe and five men’s morris, however,
with a behavioral standard of 20 and lesson and practice training (Epstein, 1994c). In this
environment (unnecessary for the easier of game tic-tac-toe), the program cycles between lessons
(a set of two contests against the expert) and practice (a set of seven contests against itself).
Without lesson and practice training, Hoyle had learned the correct patterns and pattern-based
concepts for competition against an expert, but lacked the same knowledge for competition
against less expert players. With lesson and practice training, pattern learning continued on every

 Page 21

contest, but AWL was applied only to the lessons, so that Hoyle learned to imitate only the
expert. The reflection Advisors for lose tic-tac-toe and the mill Advisors for five men’s morris
have weights that remain among the top few in the third tier during learning with AWL.
Although the reflection Advisors tend to emerge only after 80 or so contests, they typically
achieve weights higher than 10 of the 17 second-tier Advisors.

#

#

#

#

! ! !

#

For !

#

#

#

#

! ! !

#

For !

#

#

#

#

#

confinement

!"

!

For !

Figure 9: Some learned concepts for five men’s morris. α and β denote either X or O (or black
or white) consistently; NIL denotes an empty position. Note that the mover for a concept is in the
current state, but the pattern is matched for in a subsequent state.

5. Discussion

Our work not only integrates pattern learning with high-level reasoning, it also suggests how the
former gradually comes to support and enhance the latter. We do not advocate reliance on
pattern-learning alone. That would ignore the other higher-level processes quite evident in
humans. Indeed, Hoyle learns many other kinds of useful knowledge detailed elsewhere
(Epstein, 1992). Pattern learning is, however, an important component in skill development, one
that those interested in the simulation of human intelligence or the design of adaptive game-
playing programs cannot afford to ignore.

Each of the patterns Hoyle now learns is a generalization over a class of states that occurs with
some frequency and contains a simple configuration of spatially-related markers. These patterns
occur in the context of a particular stage of the game and are consistently associated with a single
outcome. An associative pattern classifier provides learning whose possibly premature guidance
is tempered by the higher-level reasoning of the other Advisors. More experienced, concept-
based Advisors gradually emerge to emphasize broader generalities, and are expected to
advocate expert play to retain their status. Finally, the identification and exclusion of
uninformative patterns constrains the pattern generator and thereby focuses the entire process
more intelligently.

In any attempt to replicate this learning model, one must allow enough time for patterns to
migrate from the waiting list into the cache and to validate the game-dependent Advisors. There

 Page 22

is an intricate relationship among the number of contests played, the threshold that keeps patterns
on the waiting list, and the aging parameters for the waiting list and the cache. For example,
Hoyle learns tic-tac-toe so quickly with a visual threshold of 2 that it has no opportunity to create
concepts at all. Although we tested other combinations, the parameter values used here were the
most successful.

The choice of these five particular BPL shapes is not central to the theme of this research, but
was used as a starting point to illustrate the operation of the system. When students in our
laboratory learn these games, they repeatedly cite small geometric arrangements of pieces as
salient patterns, much like Simon’s chunks (Chase and Simon, 1973). More complex games will
require a more complex BPL, for example, one that would include thickness and shape for Go.
An important problem, however, is to define and test for chunks in a way that minimizes the
potential combinatoric explosion. In a game with n possible board locations and only t types of
markers (including blanks), there are tn possible patterns.

Not all visual patterns, of course, are worth detecting or remembering. If patterns are overly
specific (e.g., an exact board description) there will be too many of them. If patterns are overly
general (e.g., a marker in a corner) they may provide little reliable information in the context of
the game tree. Even when a visual pattern is at the “right” level of specificity, it may not be
worth noticing (e.g., the patterns in Fig. 8e and 8f) because nothing important is denoted by its
presence. Statistical pattern recognition also requires adequate experience to render it reliable; in
an extremely large space that may be impossible. We have employed a variety of devices to limit
the number of identified patterns: BPL for game-independent template generation with a visual
bias, normalization for symmetry, and the field of view parameter. Each of them is empirically
observable in humans and captures certain kinds of regularity detected in their visual system,
such as the generalization on symmetry and biases toward learning regular and more compact
patterns (Darley, et al., 1981).

6. Related Work

6.1 Expert Game Players, Human and Machine
Psychologists have established, contrary to popular belief, that game-playing experts do not have
distinctive mental abilities (like exceptional powers of concentration, enormous memories, or
high IQ’s), that they do not do extensive forward search into the game tree, and that they do not
rely on statistical measures of typicality or concrete visual images during play (Binet, 1894;
Charness, 1981; Djakow, et al., 1927; Holding, 1985). What grandmasters do have are perceptual
focus of attention, carefully organized knowledge, and procedures to manipulate that knowledge.
They summarize some of their knowledge in concepts, both as verbal memories and as chunks.

 Page 23

A grandmaster’s recall is better than an ordinary person’s on chess positions, but only for chess
positions that are meaningful, i.e., ones that would arise during the play of a contest (Chase and
Simon, 1973).

In general, empirical evidence indicates that skilled people in many domains have better
memories, but only for meaningful patterns, and that, given the same knowledge, an unskilled
person remains unskilled, i.e., cannot apply it appropriately. (See, for example, (Allard, et al.,
1980; Egan and Schwartz, 1979; Engle and Bukstel, 1978; Shneiderman, 1976).) An expert’s
memory is organized contextually, so that a single board configuration that could arise in either
of two different games is chunked and recalled differently, depending upon the game in which it
is perceived (Eisenstadt and Kareev, 1975). There is also some evidence that a limited amount of
memory organization may be around prototypes, i.e., that certain situations may be reminiscent
of others (Goldin, 1978; Watkins, et al., 1984).

The typical game-playing program, in contrast, plays only one game and does not learn, plan,
or retain its experience. Instead it uses fast, deep, sophisticated search, and a feature-based
evaluation function that estimates the strength of any possible game state as a real number (Rich
and Knight, 1991). It also relies on an opening book of early move sequences favored by human
experts. Often this is implemented with special-purpose hardware. The programmer selects static
features that human experts hold in high regard. The tradeoff between the number of nodes
searched and the time devoted to computation at each node is critical for real-time performance,
and is well documented in the game-playing literature (Kierulf, 1989; Lee and Mahajan, 1990).
Large-scale memory for endgames has resulted in strong play for checkers and nine-men’s
morris; statistics on the success of each previously encountered state have fared less well
(DeJong and Schultz, 1988; Schaeffer, et al., 1991; Schultz and De Jong, 1988).

 Cognitive scientists, however, consider this brute force approach not at all reflective of the
processes they observe in skilled experts. Practical problem-solving and decision-making
domains offer challenges in scale well beyond most games. Brute-force memory approaches in
game playing include full-blown retrograde analysis and statistics on how often an encountered
state is associated with a win. The former overlooks context, and the latter can only be helpful
when the same states are repeatedly encountered, that is in games where there are few enough
“typical” states. And both of these mass-memory approaches overlook the AI objective; the
intent of a game-playing program is to make decisions like an expert, not to know or remember
exhaustively. Our work moves instead toward Clancey’s “dialectic coupling of sensorimotor
systems in an ongoing sequence of coordinations” (Clancey, 1993).

6.2 Pattern-oriented Play
In AI, visual cues have previously demonstrated their power as explicit search control directives

 Page 24

and as hand-selected terms in an evaluation function (Gelernter, 1963; Samuel, 1963). There is
also evidence that perceptually-based schemas for geometry theorem proving support planning at
a more abstract level and thereby limit search (Koedinger and Anderson, 1990). Visual imagery,
as an alternative representation has been addressed in part by Glasgow’s computational imagery,
but without a procedural component (Glasgow and Papadias, 1992). “Pure” pattern-oriented
programs learn slowly and tend to be unreliable (Boyan, 1992; Michie, 1974; Painter, 1993).
Nonetheless, many important game-playing programs have had strong, visually-oriented features
in their evaluation functions (Kierulf, 1989; Lee and Mahajan, 1990; Samuel, 1963; Samuel,
1967).

There is more than one kind of pattern that expert programs detect. Programs that learn
predicate calculus plans or EBL explanations are slowed by extensive matching time (Fawcett
and Utgoff, 1991; Freed, 1991; Morales, 1991; Wilkins, 1980; Yee, et al., 1990). The use of
chunks to focus attention and abstract the chess board has met with some limited success
(Campbell, 1988; Flann, 1992; George and Schaeffer, 1991). Morph’s tactical patterns are based
on threat and defense(Levinson and Snyder, 1991). Our work takes a different approach but
overlaps somewhat with Morph. Inspection of the 12 published patterns learned by a Morph-like
variant playing tic-tac-toe (Levinson, et al., 1992) shows several that are covered by Hoyle
Advisors (e.g., Victory, Panic, Open, and Pitchfork). A mill in the morris games is not a Morph-
like pattern, however, nor is symmetry through the center (although the components are). There
is nothing in the architecture of this system that precludes Morph-like patterns from this
framework.

There has been much work on generalization methods for data represented in predicate
calculus, in rule-based formulations, and numerically, as well as some work on matrix-oriented
visual perception (Anderson, 1986; DeJong, 1986; Dietterich and Michalski, 1983; Glasgow and
Papadias, 1992; Kodratoff and Ganascia, 1986; Langley, et al., 1986; Sammut and Banerji,
1986). Future work will develop additional generalization rules based on these methods.

7. Limitations and Future Work

For the initial test of this overall approach we used simple games and made a number of
simplifications in the individual components of the system. Patsy, the Advisor based on
individual patterns, was placed in Hoyle’s second tier. The correct tier assignment for the new
Advisors created from pattern-based concepts is another subject of current research. They were
placed in the third tier for the experiments described here, to avoid interference with a
preexisting second tier that already worked quite well. To improve computational efficiency,
however, and to model the transition to automaticity, the pattern-based Advisors should either
reside in the second tier or gradually migrate to it. Then, if they competed in parallel with the

 Page 25

other second-tier Advisors, the pattern-based Advisors should comment much faster in situations
where they are applicable, and thereby supplant the others.

Thus far, the AWL algorithm that learns problem-class-specific weights for decision-making
procedures is interactive; a human is asked “permission” before an Advisor is removed because
it is irrelevant, self-contradictory, or harmful. We intend to automate this process fully, so that
Hoyle will once again be a system without human intervention. We are also testing a variety of
loss bounds for use with AWL (Haussler, et al., 1994; Kivinen and Warmuth, 1994).

 For the purposes of this study, we limited pattern learning to four states in each contest, two
from each stage resulting from each contestant’s last non-forced move. These game states near
the end of the game, or the end of a game stage in the case of the morris games, proved to
capture significant patterns in these shallow games. Our current research includes more
sophisticated methods of learning pattern associations. It might be possible to use states
preceding subgoals to provide patterns in the middle game. We are also experimenting with
temporal difference learning to consider every pattern as it arises in states throughout a contest
(Sutton, 1988).

Future work includes more difficult games and other kinds of templates for spatial relations
(such as center, edge, perimeter, bounded regions, length, and area), and causally-based pattern
generation where one or more patterns that give rise to concepts are combined to create new,
larger, somewhat less regular patterns. We intend to experiment with other learning algorithms to
determine which is best for our application, and to develop and test a suite of generalization rules
and meta-rules to construct concepts from patterns, so that, for example, the two reflection
concepts for lose tic-tac-toe become a single one, as do the two mill concepts for five men’s
morris.

Acknowledgments

We acknowledge helpful discussions with Ron Kinchla, Philip Johnson-Laird and Nick
Littlestone, and the detailed comments of an anonymous referee. This work was supported in
part by a grant from the James. S. McDonnell Foundation to the Human Information Processing
Group at Princeton University, NSF grants #9001936 and #9423085, ONR grant #00014-93-1-
0510, and PSC-CUNY grant #665292.

References

Allard, F., Graham, S. and Paarsalu, M. E. 1980. Perception in Sport: Basketball. Journal of
Sport Psychology 2: 14-21.

Anderson, J. R. 1986. Knowledge Compilation: The General Learning Mechanism. In Machine
Learning: An Artificial Intelligence Approach - Volume II, Edited by R. S. Michalski, J. G.

 Page 26

Carbonell and T. M. Mitchell. Tioga Publishing, Palo Alto. 289-310.
Berliner, H. 1992. Pattern Recognition Interacting with Search. Technical Report, Pittsburgh,

PA, CMU-CS-92-211, Carnegie Mellon University.
Binet, A. 1894. Psychologie des Grands Calculateurs et Joueurs D’échecs. Hachette, Paris.
Biswas, G., Goldman, S., Fisher, D., Bhuva, B. and Glewwe, G. 1995. Assessing Design Activity

in Complex CMOS Circuit Design. In Cognitively Diagnostic Assessment, Edited by P.
Nichols, S. Chipman and R. Brennan. Lawrence Erlbaum, Hillsdale, NJ.

Boyan, J. A. 1992. Modular Neural Networks for Learning Context-Dependent Game Strategies.
Master’s thesis diss., University of Cambridge, Cambridge.

Campbell, M. S. 1988. Chunking as an Abstraction Mechanism. Ph.D. thesis diss., Carnegie
Mellon University, Pittsburgh, PA.

Charness, N. 1981. Search in Chess: Age and Skill Differences. Journal of Experimental
Psychology: Human Perception and Performance 7: 467-476.

Chase, W. G. and Simon, H. A. 1973. The Mind’s Eye in Chess. In Visual Information
Processing, Edited by W. G. Chase. Academic Press, New York. 215-281.

Clancey, W. J. 1993. Situated Action: A Neuropsychological Interpretation (Response to Vera
and Simon). Cognitive Science 17 (1): 87-116.

Cohen, D. I. A. 1972. The Solution of a Simple Game. Mathematics Magazine 45 (4): 213-216.
Crowley, K. and Siegler, R. S. 1993. Flexible Strategy Use in Young Children’s Tic-Tac-Toe.

Cognitive Science 17 (4): 531-561.
Darley, J., Glucksberg, S. and Kinchla, R. 1981. Chapter 4: Perception. In Psychology, Prentice

Hall, New York. 118-153.
DeJong, G. 1986. An Approach to Learning from Observation. In Machine Learning: An

Artificial Intelligence Approach - Volume II, Edited by R. S. Michalski, J. G. Carbonell and T.
M. Mitchell. Tioga Publishing, Palo Alto. 571-590.

DeJong, K. A. and Schultz, A. C. 1988. Using Experience-Based Learning in Game Playing. In
Proceedings of the Fifth International Machine Learning Conference, 284-290. Ed. J. Laird.
Morgan Kaufmann, San Mateo.

DeYoe, E. and Van Essen, D. 1988. Concurrent Processing Streams in the Monkey Visual
Cortex. Trends in Neuroscience 11: 219-226.

Dietterich, T. G. and Michalski, R. S. 1983. A Comparative Review of Selected Methods for
Learning from Examples. In Machine Learning: An Artificial Intelligence Approach, Edited by
R. S. Michalski, J. G. Carbonell and T. M. Mitchell. Tioga Publishing, Palo Alto. 41-81.

Djakow, I. N., Petrowski, N. W. and Rudik, P. A. 1927. Psychologie des Schachspiels. de
Gruyter, Berlin.

Egan, D. E. and Schwartz, B. J. 1979. Chunking in Recall of Symbolic Drawings. Memory and

 Page 27

Cognition 7 (2): 149-158.
Eisenstadt, M. and Kareev, Y. 1975. Aspects of Human Problem Solving: The Use of Internal

Representations. In Explorations in Cognition, Edited by D. A. Norman and D. E. Rumelhart.
Freeman, San Francisco. 308-346.

Engle, R. W. and Bukstel, L. 1978. Memory Processes among Bridge Players of Differing
Expertise. American Journal of Psychology 91: 673-689.

Epstein, S. L. 1992. Prior Knowledge Strengthens Learning to Control Search in Weak Theory
Domains. International Journal of Intelligent Systems 7: 547-586.

Epstein, S. L. 1994a. For the Right Reasons: The FORR Architecture for Learning in a Skill
Domain. Cognitive Science 18 (3): 479-511.

Epstein, S. L. 1994b. Identifying the Right Reasons: Learning to Filter Decision Makers. In
Proceedings of the AAAI 1994 Fall Symposium on Relevance., 68-71. AAAI, Palo Alto.

Epstein, S. L. 1994c. Toward an Ideal Trainer. Machine Learning 15 (3): 251-277.
Fawcett, T. E. and Utgoff, P. E. 1991. A Hybrid Method for Feature Generation. In Proceedings

of the Eighth International Workshop on Machine Learning, 137-141. Ed. L. A. Birnbaum and
G. C. Collins. Morgan Kaufmann, San Mateo.

Fine, R. 1989. The Ideas behind the Chess Openings. Random House, New York. 182 pp.
Flann, N. S. 1992. Correct Abstraction in Counter-Planning: A Knowledge Compilation

Approach. Ph.D. thesis diss., Oregon State University.
Freed, M. 1991. Learning Strategic Concepts from Experience: A Seven-Stage Process. In

Proceedings of the 13th Annual Conference of the Cognitive Science Society, 132-136.
Morgan Kaufmann, San Mateo.

Gasser, R. In press. Solving Nine Men’s Morris. Computational Intelligence :
Gelernter, H. 1963. Realization of a Geometry-Theorem Proving Machine. In Computers and

Thought, Edited by E. A. Feigenbaum and J. Feldman. McGraw-Hill, New York. 134-152.
Gelfer, I. 1991. Positional Chess Handbook. Macmillan, New York. 212 pp.
George and Schaeffer. 1991. Chunking for Experience. In Advances in Computer Chess VI,

Edited by D. F. Beal. Ellis Horwood, London. 133-147.
Glasgow, J. and Papadias, D. 1992. Computational Imagery. Cognitive Science 16 (3): 355-394.
Goldin, S. E. 1978. Memory for the Ordinary: Typicality Effects in Chess Memory: Human

Learning and Memory. Journal of Experimental Psychology: Human Learning and Memory 4:
605-611.

Haussler, D., Kivinen, J. and Warmuth, M. K. 1994. Tight Worst-Case Loss Bounds for
Predicting with Expert Advice. Technical Report, Santa Cruz, CA, UCSC-CRL-94-36,
University of California at Santa Cruz.

Hendee, W. R. 1993. Cognitive Interpretation of Visual Signals. In The Perception of Visual

 Page 28

Information, Edited by W. R. Hendee and P. N. T. Wells. Springer-Verlag, Berlin. 134-159.
Hideo, O. 1992. Good Shape. In Opening Theory Made Easy, Edited Ishi Press, San Jose, CA.

62-111.
Holding, D. 1985. The Psychology of Chess Skill. Lawrence Erlbaum, Hillsdale, NJ.
Iwamoto, K. 1976. Go for Beginners. Random House, New York. 148 pp.
Kandel, E. 1991. Chapter 30: Perception of Motion, Depth, and Form. In Principles of Neural

Science, Edited by E. Kandel, J. Schwartz and T. Jessel. Elsevier, Amsterdam. 440-466.
Kierulf, A. 1989. New Concepts in Computer Othello: Corner Value, Edge Avoidance, Access,

and Parity. In Heuristic Programming in Artificial Intelligence - The First Computer Olympiad,
Edited by D. N. L. Levy and D. F. Beal. John Wiley, New York.

Kivinen, J. and Warmuth, M. K. 1994. Exponentiated Gradient Versus Gradient Descent for
Linear Predictors. Technical Report, University of California at Santa Cruz.

Kodratoff, Y. and Ganascia, J.-G. 1986. Improving the Generalization Step in Learning. In
Machine Learning: An Artificial Intelligence Approach - Volume II, Edited by R. S. Michalski,
J. G. Carbonell and T. M. Mitchell. Tioga Publishing, Palo Alto. 215-244.

Koedinger, K. R. and Anderson, J. R. 1990. Abstract Planning and Perceptual Chunks: Elements
of Expertise in Geometry. Cognitive Science 14: 511-550.

Langley, P., Zytkow, J. M., Simon, H. A. and Bradshaw, G. L. 1986. The Search for Regularity:
Four Aspects of Scientific Discovery. In Machine Learning: An Artificial Intelligence
Approach - Volume II, Edited by R. S. Michalski, J. G. Carbonell and T. M. Mitchell. Tioga
Publishing, Palo Alto. 425-469.

Lee, K. F. and Mahajan, S. 1990. The Development of a World Class Othello Program. Artificial
Intelligence 43 (1): 21-36.

Levinson, R. and Snyder, R. 1991. Adaptive Pattern-Oriented Chess. In Proceedings of the
Eighth International Machine Learning Workshop, 85-89. Morgan Kaufmann, San Mateo.

Levinson, R. A., Beach, B., Snyder, R., Dayan, T. and Sohn, K. 1992. Adaptive-Predictive
Game-Playing Programs. Journal of Experimental and Theoretical Artificial Intelligence 4:
315-337.

Littlestone, N. 1988. Learning Quickly when Irrelevant Attributes Abound: A New Linear-
threshold Algorithm. Machine Learning 2: 285-318.

McBurney, D. H. and Collings, V. B. 1977. Chapter 10 - Perception of Objects in Space. In
Introduction to Sensation/Perception, Edited Prentice-Hall, Englewood Cliffs, NJ. 178-215.

Michie, D. 1974. On Machine Intelligence, second edition. second ed. Edinburgh University
Press, Edinburgh. 199 pp.

Morales, E. 1991. Learning Features by Experimentation in Chess. In Proceedings of the
European Workshop on Learning ‘91, 494-511.

 Page 29

Mostow, D. J. 1983. Machine Transformation of Advice into a Heuristic Search Procedure. In
Machine Learning: An Artificial Intelligence Approach, Edited by R. S. Michalski, J. G.
Carbonell and T. M. Mitchell. Tioga Publishing, Palo Alto. 367-403.

Nichelli, P., Grafman, J., Pietrini, P., Alway, D., Carton, J., et al. 1994. Brain Activity in Chess
Playing. Nature 369: 191.

Painter, J. 1993. Pattern Recognition for Decision Making in a Competitive Environment.
Master’s thesis diss., Hunter College of the City University of New York.

Pell, B. D. 1993. Strategy Generation and Evaluation for Meta-Game Playing. Ph.D. thesis diss.,
University of Cambridge.

Ratterman, M. J. and Epstein, S. L. 1995. Skilled like a Person: A Comparison of Human and
Computer Game Playing. In Proceedings of the Seventeenth Annual Conference of the
Cognitive Science Society, Lawrence Erlbaum Associates.

Rich, E. and Knight, K. 1991. Artificial Intelligence. McGraw-Hill, New York. 621 pp.
Sammut, C. and Banerji, R. B. 1986. Learning Concepts by Asking Questions. In Machine

Learning: An Artificial Intelligence Approach - Volume II, Edited by R. S. Michalski, J. G.
Carbonell and T. M. Mitchell. Tioga Publishing, Palo Alto. 167-191.

Samuel, A. L. 1963. Some Studies in Machine Learning Using the Game of Checkers. In
Computers and Thought, Edited by E. A. Feigenbaum and J. Feldman. McGraw-Hill, New
York. 71-105.

Samuel, A. L. 1967. Some Studies in Machine Learning Using the Game of Checkers. II -
Recent Progress. IBM Journal of Research and Development 11 (6): 601-617.

Schaeffer, J., Culberson, J., Treloar, N., Knight, B., Lu, P., et al. 1991. Reviving the Game of
Checkers. In Heuristic Programming in Artificial Intelligence 2 - The Second Computer
Olympiad, Edited by D. N. L. Levy and D. F. Beal. Ellis Horwood, Chichester, England. 119-
136.

Schultz, A. C. and De Jong, K. A. 1988. An Adaptive Othello Player: Experience-Based
Learning Applied to Game Playing. In Proceedings of the AAAI Spring Symposium on Game
Playing, AAAI, Palo Alto.

Shneiderman, B. 1976. Exploratory Experiments in Programmer Behavior. International Journal
of Computer and Information Sciences 5: 123-143.

Sutton, R. S. 1988. Learning to Predict by the Methods of Temporal Differences. Machine
Learning 3: 9-44.

Ungerleider, L. and Mishkin, M. 1982. Two Cortical Visual Systems. In Analysis of Visual
Behavior, Edited by D. Ingle, M. Goodale and R. Mansfield. MIT Press, Cambridge. 548-586.

Watkins, M. J., Schwartz, D. R. and Lane, D. M. 1984. Does Part-set Cueing Test for Memory
Organization? Evidence from Reconstruction of Chess Positions. Canadian Journal of

 Page 30

Psychology 38: 498-503.
Wilkins, D. 1980. Using Patterns and Plans in Chess. Artificial Intelligence 14: 165-203.
Yee, R. C., Saxena, S., Utgoff, P. E. and Barto, A. G. 1990. Explaining Temporal Differences to

Create Useful Concepts for Evaluating States. In Proceedings of the Eighth National
Conference on Artificial Intelligence, 882-888. AAAI Press, Palo Alto, CA.

Yoshio. 1991. All about Thickness. Ishi Press, Mountain View, CA. 194 pp.

