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Abstract—Laser range scanners provide rich 3D representa-
tions of urban scenes. These scenes are replete with repetitive
architectural features such as windows, balconies, and cor-
nices. Processing of dense 3D images is often computationally
intensive and occurs offline after acquisition. Here, however,
we present an online algorithm for the detection of repetitive
features in 3D range scans. Our algorithm creates a function
from each scanline by deriving a local measure at each point.
Computing the Fourier transform of that function reveals
the periodicity of the scene. This robust algorithm forms the
basis for novel methods of feature extraction, compression, and
registration. What is more this whole process can be executed
on-the-fly and integrated into hardware transforming laser
scanners into architecture aware devices.

Keywords-window detection; compression; range images;
urban scenes; fourier transforms

I. INTRODUCTION

Modeling 3D urban scenes from range scan data is a field
of active research [1], [2], [3]. One of the major problems
in scanning outdoor scenes is the density and complexity of
the acquired datasets. Detecting prominent structures such as
windows, balconies, or cornices is a required step for scene
understanding. These structures can be used for compressed
scene representations, registration applications and higher-
level recognition tasks. The detection of these structures is
currently a slow process that is performed offline after the
acquistion of the whole dataset. Detection must overcome
missing data and occlusions in these varied structures.
However, the periodicity of these structures within the urban
environment is eminent. In this paper we present novel
online algorithms for the efficient extraction of repetitive
features in large-scale urban scenes by exploiting their
periodicity. We present a number of applications, including
compression of the large-scale datasets.

The laser sensor measures distance by shooting a laser
beam at an object and recording the time it takes the
laser beam to return. If the laser beam does not return
the scanner cannot make a measurement. For this reason
windows present a challenge. Unobstructed windows often
absorb the laser beam into an interior from which they do
not escape. In those cases a facade is dotted with missing
data. Curtains and blinds can also cause problems depending
on their material. They may deflect the laser beam away

from the scanner or because of ruffles and gaps provide in-
consistent measurements. While windows are unpredictable,
in urban environments they tend to occur regularly. Despite
the difficulty of interpreting data from a single window, a
vertical line of windows will be predictably unpredictable.
The areas of missing and inconsistent data will occur regu-
larly, with a defined period. Balconies have highly variable
appearances due to self-occlusions and vegetation and glass
doors. However their periodicity is also recognizable.

Fourier analysis gives insight into periodic elements. Con-
structing the Fourier transform of a signal from a vertical line
containing windows or balconies identifies the frequency and
size of those features. Adjacent scanlines are likely to pass
over the same features and can be used to reinforce the
signal. The entire process can be executed while scanning
is underway allowing for a real-time analysis of the scene.
After the detection of the locations of periodic elements
further processing can be performed. We start by presenting
related work and then present the details of our approach.

II. RELATED WORK

Detecting repeated structures such as windows and bal-
conies in urban scenes is a problem that has received
significant attention. Using 2D images as input, shape gram-
mars for architectural design have been used in modeling
facades acquired through aerial photographs [4] and for the
generation of synthetic cities [5].

A similar approach that uses ground-based images was
presented in [6]. An earlier approach is the one of [7]. The
work of [8] uses a sequence of images to produce a sparse
3D point cloud as input to the detection algorithms.

Fewer approaches exist when the input is a laser range
scan. [9] derives regularities of substructures from a 3D
model or range scan of a scene. This works by detecting
symmetries (or similarity transformations) of basic structures
in a regular grid. This general approach can be used for
extracting regularities but it is sensitive in the calculation of
curvatures and computationally intensive. In [10] window-
like rectangular features were extracted by using 3D edge
detection on high-resolution 3D data. Line features are
again utilized in [11] for symmetry detection. [12] presents
an interactive interface which exploits regular structures in
urban scenes to improve sparse point clouds. Employing a
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Figure 1. A texture mapped range scan. The balconies and windows seen
here can be detected and extracted on-the-fly using the techniques discussed
in this paper.

Markov Network approach [13] labels points as windows,
but requires training.

Our contributions with respect to earlier work can be
summarized as follows:
(a) we efficiently extract repeated structures in range datasets
of large-scale scenes in an online fashion by processing
the data as each scanline is being acquired, (b) by using
periodicity as the basis of our detection, we can have robust
results even in low resolution areas of the scene, (c) we
apply our feature detection results for compression, and (d)
we do not require training.

III. DATA ACQUISITION

Our lab operates a ScanStation2 3D range scanner [14].
We collect 2.5D range data of large scale urban scenes.
Scans contain up to 10 million points depending on the field
of view and resolution. The scans have a resolution of about
10 points per square meter at a 50 meter radius. Resolution
varies with the distance from the scanner, (a detail which
our algorithm must address in order to properly recognize
regular structures). The scans provide a 360 degree view
within a 300 meter radius encompassing about one city
block, for example see Figure 1.

The scanner is placed on a steady platform and measures
the distance to the closest surface. The measurement is
acquired by emitting a laser beam and precisely timing the
delay between when it is emitted and when it is reflected
back. The incremental movement of the beam is a parameter
set by the user. No distance is measured when the laser hits
transparent or highly specular surfaces, or when the closest
surface is at a distance greater than a threshold (300 meters
in our setting). For example when the laser is pointed at the
sky nothing reflects the beam and no data is recorded.

IV. THE ALGORITHM

Each column from the 2D array of data corresponds to a
vertical set of 3D points. For this reason the data retrieved
from the scanner is often referred to as 2.5D. We will use the
terms scanline and column interchangeably as both refer to
a vertical set of 3D points forming a column within the 2D
array. We create a signal from this set of points. When the
laser has passed over periodic features this repetition appears
in the signal. By performing Fourier analysis we can extract
the period of these elements. We group adjacent columns
covering the same features. Region growing extracts the
precise features. The range scan can be compressed with
knowledge of the periodicity of a feature.

A. Preprocessing

Data points from a scanline of an urban scene typically
occur near one of two major planes, the ground plane and
the facade plane. The ground plane points include pavement,
vegetation, people, cars and other accoutrements of a city
street. These points rarely include periodic elements and are
not of interest here. On the other hand, points that make up
the facade plane often incorporate periodic elements and are
very much of interest. Often there is another group of points
of unresolved data that come from the scanline passing over
the building and sending the laser into the sky from which
it does not return.

Clearly we would like to separate the points that might
contain periodic elements from those we are certain do
not. Using [15] we can classify points which belong to the
ground plane and remove them from our consideration. The
unresolved data points from the sky region are also removed.

It is often the case that a scanline will cover one facade
of interest and then upon reaching the top of that facade
record fragments of other buildings further in the distance
or equipment on the roof like water towers or central air-
conditioning units. These data are not of interest when
searching for the periodic elements in the facade. We ignore
them by introducing a jump threshold which terminates
calculation of the column function when adjacent points in
the column are more than a certain distance apart.

B. The Column Function

We must devise a signal from the scanline on which
we will perform the Fourier analysis. This function must
reflect the regularity of the features, and therefore yield a
periodic function for each column. We will compute the
Fourier Transform of each of these functions to discover
the regularity. See Figures 2 and 3.

The measure of the angles between neighboring points in
a column is one choice. This can be computed efficiently.
However since it only takes into account three points it is a
noisy metric. Nevertheless the regularity of windows shines
through and even with this primitive measure regularity can
be deduced.



Figure 2. A column function covering windows.

Figure 3. A column function that does not pass over windows.

To obtain the column function from angles we define

Xi,k: A three dimensional point located in the ith column
and jth row of the scan.

Di,k: Xi,k+1 −Xi,k (the vector between two successive
measurements in a given scanline i).

Vi,k: the angle of the vector Di,k with the vector Di,k+1.

As we obtain sequential observations along any column
i, we can form the function from the sequence of angles
{Vik}, k = 1, 2, . . .. When the sequence passes over planar
areas like facades of buildings we expect the Vi,k to be near
0, see Figure 3. As the sequence moves over non-planar
and discontinuous regions such as vegetation or architectural
features we expect Vi,k >> 0, see Figure 2. Using this
sequence of angles [15] demonstrates a way to classify
points as belonging to the horizontal ground plane, a vertical
facade, or vegetation.

A more robust measure can be achieved by estimating
the curvature at each point in the column. Cazals and Pouget
have developed a method of estimating curvature in 3D data
[16]. Using osculating polynomial jets they have devised a
method to approximate the Gaussian and mean curvature.
This method takes into account the local neighborhood of a
point and is less subject to noise than the angle metric but
more computationally expensive.

We have had success with the quicker metric of successive
angles and have not resorted to the more laborious calcula-
tion of curvatures in much of this work. However, the feature
extraction (V-A) algorithms relies on curvature estimation.
It is also likely that in certain situations this more robust
metric will prove useful.

Another potential signal can come from the Principal
Component Analysis. A rough estimate of the planarity of
a neighborhood is given by the eigenvalue decomposition
of the covariance matrix. The smallest eigenvalue of the
covariance matrix gives a measure of the planarity of the
region. While facades are planar most architectural features
of interest are not. The sequence of eigenvalues therefore

Figure 4. The uneven sampling of the range scan.

Figure 5. The distortion of the column function due to uneven sampling.

can also be used to construct the column function.

C. Interpolation

The laser scanner rotates a fixed angle between readings.
However the objects measured are not equidistant from the
scanner. Just as our vision skews the relative size of near and
far objects, the scanner samples nearby objects with higher
resolution than distant ones. The column function will reflect
this fact. The periodicity of a column will be distorted by
the uneven sampling of the laser. See Figure 4 and 5.

To address this fact interpolation must be performed on
the column function. We use a nearest neighbor interpolation
which adjusts the column function to reflect the true dis-
tances. When we compute the angle, curvature or eigenvalue
that compose the column function the distance of each
point to the ground plane is also computed. The points are
sorted based on these distances. The column function is then
resampled with a consistent distance interval. This corrects
the distortion from the scanner.

D. The Fourier Transform

The Fourier transform decomposes a function into sinu-
soids [17]. The magnitude of the Fourier transform indicates
the amount of each frequency that is present in the function.
The frequency of a periodic function will register as a local
maximum in the magnitude of its Fourier transform.

With this theory in mind we take the Fourier transform of
the column functions. When the column has passed over a
periodic element such as a series of windows this repetition
appears as a local maximum in the magnitude of the Fourier
transform. By extracting the local maxima in the Fourier



Figure 6. The Fourier Transform of a column function with windows,
after interpolation. The red dot is placed under the dominant frequency.
The absolute maximum is the zeroth frequency or the mean of the column
function.

Figure 7. The Fourier Transform of a column function with windows
before interpolation. Again the red dot is under the dominant frequency,
but without interpolation the local maxima are more diffuse.

transform we can discover which frequencies occur in the
column. We ignore the zeroth frequency which is often
the global maximum because it represents the mean of the
function and does not correspond to a period.

As desired the transforms of columns containing repeated
windows show noticeable maxima at frequencies corre-
sponding to the windows in the column. Figure 6 shows
a typical local maxima found in periodic column functions.
Conversely the transforms of windowless columns show
only the global maximum of the zeroth frequency and no
noticeable local maxima.

Without the interpolation which corrects the uneven sam-
pling of the scanner, the local maxima will be more diffuse.
This makes it more difficult to pinpoint the exact frequencies
present in the column. Compare the transform in Figure 6
to Figure 7. Interpolation is therefore essential in obtaining
the precise frequency of the scanline.

The problem of finding repeated structures has been
reduced to recognizing local maxima in a 1D Fourier Trans-
form. With one pass over the transform we can extract the
relevant frequencies. The data is then segmented into pieces
corresponding to the period and the repetition can be seen
in the scan. See Figure 8.

E. Column Classification

As the scanner moves around the scene many columns of
data are recorded. For each column we compute the Fourier
transform. By subtracting the zeroth frequency from the
transform we obtain a measure of the quantity of periodic
elements within the scan. This measure can be used as a
threshold to classify individual columns. Columns with a
high measure are likely to contain periodic elements while
columns with a low measure are not.

Figure 8. The dominant period plotted in several range scans. The red
circles indicate the periods.

Using this quantity we can group adjacent columns based
on periodicity measures. Each group of columns will cor-
respond to a repeated feature and should encompass all the
relevant data points of that feature. See Figure 9.

The column groups can also be used to buffer against
noise in the individual column functions. The Fourier trans-
forms of the column functions from the group can be
summed together to make a more robust signal. However
since different columns may be indexed differently the
Fourier transforms must be aligned before they are summed.
This alignment can be forced by centering the transforms
along all of their zeroth frequencies and then summing. This
aggregate transform is a smoother more robust signal than
the transforms of the individual column functions. From the
aggregate transform we can make a confident estimate of
the period of each group of columns. See Figure 10.

V. APPLICATIONS

The rapid detection of repeated structures opens the door
to an arsenal of potential algorithms. The knowledge of a
periodic element and its extracted point cloud can be used
for compression, registration, segmentation, and matching.

A. Feature Extraction

Once a repeated feature has been recognized, we may
desire deeper insight into that feature. We know from the
local maxima in the Fourier transform of the aggregated
columns what periods are present within a group of columns.
Now we wish to discover exactly what is repeating.



Figure 9. The columns are classified as windowed and windowless.
Adjacent windowed columns are grouped. See the pdf for color.

Figure 10. The Aggregated Fourier Transform of a group of adjacent
column functions. The highest magnitude non-zero frequency is extracted
as the dominant frequency. There is a red dot indicating the dominant
frequency.

To extract the repeated feature we grow regions of points
based on curvature. If the column function was constructed
from curvature then the curvatures at each point are already
known. Otherwise they must be computed now using the
method described in [16].

Once the curvatures are known the points are grouped
through a connected components algorithm. Points with high
curvatures are grouped with neighboring points that also
have high curvature. Planar points are ignored. The process
is optimized using the disjoint sets data structure. See Figure
11.

B. Shape Signatures and Verification

To compactly identify the features we compute shape
signatures for each extracted region. These shape signatures
take the form of histograms as described in [18]. To generate
the histogram we randomly select 5000 pairs of points within
the region. For each pair we calculate the euclidean distance

Figure 11. Some extracted features. Each distinct feature is colored
differently, see the pdf for colors.

between them and create the histogram by quantizing these
distances. These shape signatures can be shown to be
translation, rotation, and reflection invariant.

Architectural periodicity is often the result of the rep-
etition of a single building element, like a window or a
balcony. However, it is also possible that distinct features
will be periodically aligned, for example windows directly
below balconies. Histograms, like those in Figure 12, allow
us to verify which features are involved in the repetition
the transform exposed. Similar features will have similar
histogram signatures. Comparing 3D shapes is a challeng-
ing problem. Comparing histograms, however, is easy, we
simply sum their differences. The calculation is quick and
gives a decent estimation of the similarity between the two
shapes.

C. Compression

The knowledge of an exact repeated feature lights the
way for compression. Fourier analysis indicates if a group
of columns is periodic. This knowledge alone is sufficient for
a primitive and lossy compression. The group is segmented
into regions that have a height equal to the distance of
one period as determined by the Fourier transform. Because
windows typically have vertical and horizontal symmetry
we wish to extract the feauture’s surrounding square. The
Chebyshev distance between two points α and β in R3 is
defined as
DChebyshev(α, β):maxi∈(1,2,3)(|αi − βi|).

We use this metric to determine the square region with sides
equal to the length of the dominant period. One of these
regions is chosen as the representative, in our experiments
we choose the densest feature from the set in V-A. To



Figure 12. The histograms computed for each features. Notice how similar
features have similar histograms.

Figure 13. The columns containing windows are segmented by their
dominant period. See the pdf for color.

complete the compression we translate the chosen region
vertically by the distance of the period. In this way the size
of the column can be reduced by the number of windows
found in the group of columns.

For a more ambitious reduction we can assume that
the non-repeating areas of the building are planar. This is
often, but not always, true for urban structures. The vertical
distance that came from the Fourier analysis can be coupled
with the horizontal distance to the next adjacent group of
periodic columns. The Chebyshev distance metric is altered
to handle two different distances one vertical, the other

horizontal. The scanner determines the third basis of the
coordinate system to be in the vertical direction. Therefore
the vertical axis corresponds to the third coordinate of the
points. The horizontal direction, however, is not necessarily
a basis so we take the Chebyshev distance of both the first
and second coordinates.
DV ertical(α, β): (|α3 − β3|)
DHorizontal(α, β): max(|α1 − β1|, |α2 − β2|)
Now much larger swaths of the building are included in

the compression. The entire facade is compressed by a factor
equal to the number of periodic elements it contains.

This naı̈ve compression may achieve order of magnitude
reductions but not without a cost. It is common for buildings
to contain one type of repeated feature vertically aligned
with an entirely different feature. For example windows of
various sizes or windows and balconies in the same column.
To account for this the compression described above is
augmented to analyze what type of feature is being used
for compression and to ensure that this feature is only used
to replace similar features.

To achieve this the histogram shape signatures developed
in V-B are computed. Now instead of blindly replacing
one region with another we first compare the histograms
associated with each region. If the shape signatures are
similar we can continue with the compression. However if
the histogram differences are above a threshold we retain
both regions in the compressed scan. This way we avoid mis-
takenly compressing two different features into one, solely
because the features were vertically aligned and exhibited
some periodicity.

This type of compression is more computationally inten-
sive as the histograms of each region must be computed.
Depending on the degree of compression desired and the
style of buildings in the scan users may choose to eschew
this step for speed or incorporate it for enhanced reliability.

The scan depicted in Figure 14 contains 59,749 data
points. Using this compression method we were able to
remove 41,660 points or about 70% of the data.

D. Registration

Knowledge of the periodicity of scans can assist in
registering multiple scans in the same coordinate system.
Many registration algorithms attempt to register the raw data
in the scans which can be computationally expensive and
require user input.

Rather than dealing directly with the data, one can use
the periods discovered by the Fourier transformations. We
reduce the point cloud to a grid of repeated structures.
For example, see the grid in Figure 15. Each column in
the grid has its associated period and feature. The grid of
repeated features is then registered with another scan’s grid
of features.

For verification the histograms associated with each ar-
chitectural element are also compared. From this registration



Figure 14. On the left the columns containing windows and the surrounding planar regions are segmented by their dominant period. In the center the
compressed version of the scan created by translating the representative repetitive feature. On the right all but one period have been removed, showing the
amount of reduction. The compressed version of the scan seen above is 70% smaller than the original.

the transformation matrix can be computed and applied to
the data points to register the scans. This entire process
can happen during acquisition perhaps opening the door for
simultaneous recording and registration of 3D images from
multiple scanners.

VI. CONCLUSION AND FUTURE WORK

These algorithms were executed on a plethora of scans
retrieved by the ScanStation2 laser scanner. The results
show success in recognizing the periods of repeated features,
extracting those features, and performing compression.

The successive angles between points can be computed
in constant time. Extracting the dominant frequency in a
transform takes only one pass over the transform or O(n)
where n is the size of a scanline. So the complexity of the
algorithm presented here is O(n log2 n) from computing the
Fourier transform with a FFT implementation.

The compression results could be improved by using the
Iterative Closest Points algorithm. A small error in the de-
tected period will be multiplied every time the representative
feature is translated by that period. In large buildings this

could become noticeable. To mitigate this, every translation
could use ICP to register the repeated feature against the
original.

We presented an online algorithm for the detection of
repetitive features in 3D range data. The application of
Fourier analysis to recognizing repetitive features allows
on-the-fly classification, compression, and understanding of
periodicity in range images. It is our hope that algorithms of
this type will continue to be developed and integrated into
hardware adding an appreciation of architectural nuance to
the laser detection of urban scenes.
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