
CS 82010 UNIX Application Development

Assignment 3, Spring 2013

Prof. Stewart Weiss

Assignment 3: Simple vi

This assignment asks you to use the demo program simplevi.c as a starting point to implement additional
features and �x some of its current �aws. The simplevi.c code, located on the server in the directory
/home/class_stuff/unix_demos/chapter05, is a very rudimentary text editor designed to emulate an
extremely simple version of vi. In its current form, it only allows the user to insert text; it has no means
of deleting text or even backspacing. It does not allow the user to open an existing �le, allowing the user
instead to create text by typing into it from the terminal's keyboard. It does allow the user to save the
entered text, but only to a �le whose name is hard-coded into the program. In addition, in its current
form, there is a �xed limit on how large the �le may be and how large lines may be. Lastly, it has not yet
implemented vertical scrolling (although that may be �xed shortly).

The implementation itself is not designed to be e�cient. It uses a �xed size linear array of characters to
represent the text bu�er, and each insertion requires shifting the entire array. The same is true when new
lines are added, as there is an array of line lengths that keeps track of the lengths of all text lines.

You are to remedy the above de�ciencies as follows:

1. Allow the user to enter the name of a �le on the command line and �ll the text bu�er with its contents
if one is provided.

2. In command mode, the user should be able to enter the x command to delete a single character under
the cursor.

3. In command mode, the user should be able to enter the dd command to delete the current line.

4. In input mode, when the user enters the backspace key, the character to the left of the cursor should
be removed from the screen and from the bu�er.

5. In last line mode, the allowed commands should be �q�, �w�, �wq�, �w filename�, and �q!�. They should
have the same meanings as they do in vi � �q� quits without saving, �w� saves to the �le that was
opened, �w filename� to the �le filename (without changing the currently opened �le, unlike apps
such as MS O�ce and OpenO�ce), and �q!� quits without saving a modi�ed �le. Thus, the program
must detect whether a save took place since the last modi�cation of any kind. For this purpose, a
modi�cation is de�ned as entering input mode whether or not anything was done, and any form of
deletion.

6. The program should gracefully handle when the text gets larger than the allocated bu�er, either by
reallocating a larger one, or letting the user save and quit.

7. If vertical scrolling has not been implemented in the demo by the time you start it, then add it to it.

8. Optional: the arrow navigation keys do not use vi's model of navigation. In vi, the up and down
arrows move the cursor to the o�set within the text line of the last o�set of any horizontal movement,
or to the end of the line if the o�set is greater than the line's length. In simplevi, the cursor is moved
to the o�set of the current line. In other words, it does not preserve the o�set from last horizontal
movements. Make simplevi behave like vi in this respect.

EXIT STATUS

0 If it succeeded.

1 If it crashed for any reason.

1



CS 82010 UNIX Application Development

Assignment 3, Spring 2013

Prof. Stewart Weiss

Submitting the Assignment

Create a directory in

cs82010.gc.cuny.edu:/home/class_stuff/cs82010/projects/project3

named username_hwk3. Give it permissions 700 so that only you have access to it. Within that directory,
put all project-related �les. For example, if you have a multi-�le project with a Make�le, all �les should be
there. If you use a Make�le, make sure you name the executable simplevi when it is built. If you write a
multi-�le program, you must create a Make�le, so that I can compile and build it with the single command
"make." If it is a single �le, name it simplevi.X, where X is the GNU extension for the language (.c for C,
.cpp or .C for C++, etc.)

The program must be well-documented and must contain a preamble or prologue at the very top like the
ones in my demo programs, which provides authorship, use, and other pertinent information. All functions
should have documentation that details what their parameters are and what its return value is.

2


