
CS OSSD Open Source Software Development

Assignment 6: Collaborative Editing

Prof. Stewart Weiss

Assignment 6: Collaborative Editing, Revised Version

1 Overview

After reading your blog posts, I can see that many of you have no problem writing understandably. On the
other hand, many of the posts would bene�t from inspection by another pair or two of eyes. There are poorly
constructed sentences, incorrect uses of words, incorrect grammatical constructions, and spelling mistakes
that a spell-checker cannot catch because they are valid words. The content of many of your posts is truly
outstanding, but the message is weakened by the delivery.

I believe it is very important that your writing is good. People who would look to hire you make judgments
based on such things as your ability to speak well and write well. Your ability to communicate in writing
and orally is an important part of your skill set. Countless recruiters have said as much to me personally
and in their public writings about this.

Therefore, I have devised an assignment for you to do that aims to accomplish three important objectives:

• to give you experience in collaborative work in small teams,

• to give you experience reading other people's writing with an eye towards improving it (i.e., constructive
commenting), and

• to develop your Git skills further.

In short, you will be assigned to a team of three to four people who will fork and clone each other's blog
post repositories, suggest changes, make pull requests to the original owners to improve the posts, and as the
owners of the blog post repositories, create remote and local branches that contain the teammates' revisions.
This will involve potential merge con�icts, as two people might simultaneously make requests that change
the same section of a post.

2 Reading

Before you work on this project you should read the chapter in the Pro Git book named Git Branching.

3 Details

I have created teams based on my own non-scienti�c observations of your writing, personalities, and the
relationships I have observed. I will not comment on my criteria for doing this. Some of my decisions are
based on a bit of social science, for what that is worth. The teams are as follows:

Team 1 Team 2 Team 3 Team 4

audiencia-cereal shadow12ac johncgenere f0cus10

DanieSegarra36 lashana29 Chocolate-Spaghet FrancisXIrizarry

LiudmilaZyrianova239 anupamdas104 gutierrezjdr Jimmyzs

yizongk

Suppose the members of the team are named x, y, and z, to make this easy.

1. Each of x, y, and z will fork a copy of the other two weekly blog post repositories, then clone these
forks onto their local machines. Use the exact methods I described for the �rst git exercise to do this.
Work only on the posts for the �rst two weeks, i.e., not the Git Work�ow post.

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported Int'l License. 1

https://creativecommons.org/licenses/by-sa/3.0/ 


CS OSSD Open Source Software Development

Assignment 6: Collaborative Editing

Prof. Stewart Weiss

2. Pick one of the two repositories to work on �rst. It is a good idea to coordinate with your team
members to reduce the merge con�icts. For example, x can pick y, y can pick z, and z can pick x.
Then they rotate so that x picks z, z picks y, and y picks x.

3. Read the post �rst for spelling errors, then for grammar errors you can detect, then usage. Grammar
errors are sometimes obvious: �Who have argued so well.� should be �Who has argued so well.� Usage
is when the wrong words or expressions are used in a sentence, like �She should have written on the

sorting algorithm, not on the searching algorithm.� Here �on� should really be �about�. If you think a
sentence can be improved by a larger change, suggest it nicely .

4. When you think your changes are good and complete, stage them (git add), commit them (with a good
commit message), and then push them to your remote (git push origin). Go to GitHub and issue a pull
request to the person whose post you have worked on.

5. When you, as the owner of your GitHub repository, receive a pull request from a teammate, say you
are x and your teammate is y, you should pull the suggested changes down to your local machine.
There are di�erent ways to do this. Here is my suggestion.

(a) On your repository page, click on the Pull Requests tab. You will see a list of pull requests,
including the one from y. Click on the one from y.

(b) If there is a merge con�ict you will need to resolve it before proceeding with the remaining steps.
You will see the message �This branch has conflicts that must be resolved� with a button
labeled �Resolve conflicts� to its right. When you click on it, GitHub will change the window
to one in which you can edit the text of the �le and resolve the merge. Make changes so that the
con�ict does not exist and then click on the �Commit Merge� button. Continue to the next step.

(c) Assuming that there are no merge con�icts, you should see a green Merge Pull Request button,
to the right of which there is text reading �view command line instructions.� The �command
line instructions� text is clickable. Click on it and the page displays the command line in-
structions that are needed to pull down the code to be merged.

(d) On your local machine, navigate to the directory containing your Git repository for the blog. You
need to run two commands. The �rst creates a new branch in your repository, making it point to
the current master branch, and makes it the current working branch (the one that HEAD points
to.). You should name the new branch something like y-suggested-changes:

git checkout -b y-suggestion-changes master

The master at the end of this command tells Git to make the new branch point to the master

branch.

(e) For the next command, look at the URL for the name of y 's repository from which the pull request
comes. It will be something like

https://github.com/y/x-weekly.git

The command to run next pulls down the code to be merged into your new branch:

git pull https://github.com/y/x-weekly.git master

The master at the end of this command tells Git that the branch from which to pull the code is
the master branch of y 's repository. Unless the Git commands listed in the box state di�erently,
you should use �master� in this command.

(f) At this point you are ready to examine the changes proposed by y and make whatever changes
you want to accept. You might want to open a discussion with y at this point. When you are
satis�ed, stage the �le and commit them.

6. Before you push the changes up to your upstream repository, you will take the opportunity to use a
new part of the work�ow. Rather than pushing the changes to the master branch on the remote, you
can create a branch on the remote on GitHub, and push the changes into that. To create a new branch
in your remote repository on GitHub, click on the Code tab, then click in the Branch: box and type
a new branch name. Suppose on GitHub you named this branch y-branch.

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported Int'l License. 2

https://creativecommons.org/licenses/by-sa/3.0/ 


CS OSSD Open Source Software Development

Assignment 6: Collaborative Editing

Prof. Stewart Weiss

7. Back on your local machine, enter the command

git push origin HEAD:y-branch

Git will push the local repository into the new branch, y-branch, on the server.

8. At this point, you have a new version of you blog post in the y-branch on the server, based on the
changes proposed by y. When z makes suggestions, you can repeat steps 1 through 6 above for z 's
suggestions, working on your local machine. Then, you can merge all changes made by y and z into a
single branch on the server, calling it something like revision. In order for the changes to be displayed
on your GitHubPages webpage, these will have to be merged into the master branch on the server.
You can do this as the �nal step.

No matter what you do when making suggestions, be thoughtful, considerate, and constructive. This is your
chance to �start on the right foot� in the world of open source. Be a good citizen.

4 Due Date

I will be giving you another parallel assignment that requires reading and an activity. In the meanwhile start
on this and have it �nished by October 8, which is after we meet again. When you are �nished, the person
who owns the repository should open an issue on GitHub and send a comment to me that it is complete. If
you need help �guring out how to do this, post a question to Piazza.

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported Int'l License. 3

https://creativecommons.org/licenses/by-sa/3.0/ 

	1 Overview
	2 Reading
	3 Details
	4 Due Date

