
CSci 235 Software Design and Analysis II
Programming Project 1

Prof. Stewart Weiss

Programming Project 1:
Processing New York City Open Data

Due date: Sept. 29, 11:59PM EST.

You may discuss any of the assignments with your classmates and tutors (or anyone else) but
all work for all assignments must be entirely your own. Any sharing or copying of assignments
will be considered academic dishonesty. If you get significant help from anyone, you should
acknowledge that help in your submitted documents, in which case your grade will adjusted in
proportion to the part that you completed on your own. You are responsible for every line in
your program: you need to know what it does and why. You should not use any data structures
and features of C++ that have not been covered in this class or any of its prerequisite classes.
If you have doubts about whether or not you are allowed to use certain language features,
inquire first.

Summary
This assignment is designed to expose you to the use of open data. Wikipedia has a good description of
open data: “open data is the idea that some data should be freely available to everyone to use and republish
as they wish, without restrictions from copyright, patents or other mechanisms of control.” New York City
(NYC) has a treasure trove of open datasets that are available to download. You can explore them at
https://nycopendata.socrata.com/.
For this assignment, you will work with the dataset consisting of the most popular baby names given in
New York City in the four years from 2011 through 2014. The data is stored in a comma-separated-values
(CSV) file which has been downloaded and stored on our server for your convenience. You can find it in the
directory

/data/biocs/b/student.accounts/cs235_sw/data/

You will be writing parts of a program that will process this dataset to answer various questions about the
data, such as which name was the most popular name given to a baby girl in 2012 among Hispanic women,
or what name was the most popular among all women in 2014. The exact types of questions will be discussed
below.
This assignment gives you experience in working with existing code. You are given the interfaces to two
different classes. In one case you have to write an implementation for that interface, and in the other, you
are given the implementation as a binary file and you just need to write client code that uses the interface.

Objectives
The objectives of this first programming project are for you to master the following tasks:

• working with multi-file programs using separate compilation

• reading, understanding, and working with existing source code

• reading data from input files

• writing data to output files

• using and understanding command line arguments

• working with large data sets

1

https://nycopendata.socrata.com/

CSci 235 Software Design and Analysis II
Programming Project 1

Prof. Stewart Weiss

• using arrays

• writing class interfaces and their implementations

Most, if not all, of the skills that you need to complete this project are based on the material covered in CSci
135, but it is possible that your instructor there did not cover that skill enough, resulting in your having
to spend more time improving it for this assignment. It is even possible that there might be certain topics
that your section did not cover at all, or that you did not get much practice on, in which case you are at a
greater disadvantage, but you should view this as an opportunity to get up to speed now.

Program Input
Your program will read the data from a file whose name is given as a command line argument. It will also
read the commands it must carry out from a file given as a second command line argument. There is no
other input provided. In particular, there is no user interaction.

Input Files

The program is given the pathnames of two input text files as its command line arguments: The first is
the pathname of a file containing the data set in CSV (comma separated values) format. The second is
the pathname of a file containing a list of commands that your program needs to perform. For example,
if my program is named proj1_sweiss, and the data is stored in a file in my working directory named
babynames.csv and the commands are in a file named test_commands, then I would type

proj1_sweiss babynames.csv test_commands

to run my program on the babynames.csv dataset using the commands in the set of commands in test_commands.
It is an error if someone attempts to run the program without two file names. The program must check
that two arguments were given on the command line and that each file can be opened for reading by the
program. If there are any errors, such as missing arguments, arguments that do not exist, or that cannot
be opened, the program must display a short but descriptive error message that indicates the nature of the
error (such as “the file mycommands cannot be opened.”) The message should be as specific as possible.
It is not enough to write something like “could not open file.” The error message should be written to
the standard error stream (cerr in C++, stderr in C).

Data File

The data file was downloaded from the webpage
https://data.cityofnewyork.us/Health/Most-Popular-Baby-Names-by-Sex-and-Mother-s-Ethnic/25th-nujf
as a CSV file. The first line in the file contains the names of the six columns in the file:

BRTH_YR,GNDR,ETHCTY,NM,CNT,RNK

respectively, the birth year, gender, mother’s ethnicity, baby’s name, count, and rank. Each line after the
first represents a single data record consisting of six, comma-separated values with the following meaning:

BRTH_YR The year in which babies with the given name were born

GNDR The gender of the babies with the given name

ETHCTY The ethnicity of the mothers of the babies with the given name

NM The actual baby name

CNT The number of babies with the given name, born in the given year, with the given gender and
mother’s ethnicity

RNK The rank of that name of all baby names in the given year, given mother’s ethnicity, and baby
gender, with 1 being the highest rank, i.e., the most frequently occurring name.

2

https://data.cityofnewyork.us/Health/Most-Popular-Baby-Names-by-Sex-and-Mother-s-Ethnic/25th-nujf

CSci 235 Software Design and Analysis II
Programming Project 1

Prof. Stewart Weiss

As an example, the line

2013,MALE,ASIAN AND PACIFIC ISLANDER,Dylan,45,24

represents the fact that 45 male babies born in 2013 to women who self-identified as “Asian and Pacific
Islander” were named Dylan, and that of all male babies born in 2013 to such women, Dylan was the 24th
most popular.
The downloaded data file had duplicate lines, although I do not know why they are there. For your conve-
nience, I removed the duplicate lines, so that each line represents a unique (year,gender, ethnicity, name)
record. The only space characters in the lines are those found between the words of the ethnicity field.

Commands File

The file that contains commands has a single command per line. Each line is in one of the three forms
described below. The exact meaning of each command is specified in the section below entitled Program
Behavior :
print tofilename

where tofilename is replaced by the name of a file to be created to hold the output.

sort how

where how is replaced by one of the words byname or byrank, whose meanings are explained
below

getmax year gender ethnicity

where year is either a number between 2011 and 2014 or the digit 0,
gender is either M, F, or the digit 0,
ethnicity is either W, B, H, A, or the digit 0.

Notice that the above descriptions do not describe what the program is supposed to do when it reads a line,
but merely whether a line is in a legal form. If it is not syntactically correct, the program must report
the error on the standard error stream and advance to the next line, and if it is correct, the program must
process the given command.

Output Files

The program writes all correct output to one or more output files. All error messages generated by your
code should be written to the standard error stream (cerr in C++, stderr in C.)

Program Behavior
If the data file and commands file are opened successfully, the program must then process each command
one after the other. Each command must be processed according to the description presented below. When
all commands have been processed, any open files should be closed and the program terminated.

print

Syntax: print tofilename
This command causes the data to be written to the given file in whatever order it is stored in when the
command is issued, one record per line. If the file already exists, it is overwritten. The records should be
written one per line. For each record, the following information should be displayed in a field of exactly the
width specified:

• birth_year, field width: 4 characters, left justified

3

CSci 235 Software Design and Analysis II
Programming Project 1

Prof. Stewart Weiss

• gender, field width: 6 characters, as either “MALE” or “FEMALE”, left justified

• ethnicity, field width: 26 characters, exactly as contained in original data file, left justified

• name, field width: 16 characters, left justified, in UPPER CASE

• count, field width: 6 characters, right justified

• rank, field width: 6 characters, right justified

The entries should be separated by tab characters (a total of 5 tabs). The field widths must be exactly as
specified, no more, no less.

sort

Syntax: sort byname | sort byrank

If byname, the records are sorted with four keys: first by birth year in ascending order, then by gender
with FEMALE < MALE, then by ethnicity in ascending alphabetical order, then by name, in ascending
alphabetical order.
If byrank, the records are sorted with four keys: first by birth year in ascending order, then by gender with
FEMALE < MALE, then by ethnicity in ascending alphabetical order, then by rank, in descending numeric
order.
In both cases, the records are sorted in place in the object storing the records.

getmax

Syntax: getmax year gender ethnicity

where year is either a number between 2011 and 2014 or the digit 0,
gender is either M, F, or the digit 0,
ethnicity is either W, B, H, A, or the digit 0,

The getmax command is given three mandatory arguments. If no argument is the digit 0, then the getmax
command finds the name whose count is the greatest for the given year, gender, and ethnicity and appends
the entire record to a file named results in the current working directory. using the same output
format as is used in the print command described above.
The digit 0 is a wild-card for the given field. This means that getmax ignores that field when looking for
the record with greatest count. If there are multiple records with a maximal count, then it writes all of them
to the file, using the same format as the print command. For example, if the year is 2011 but gender is 0
and ethnicity is 0, then getmax writes the record of the baby born in 2011 with greatest count value, and if
there are ties, then all records that are tied at that count are written. If the year is 2011 and the gender is
F, but ethnicity is 0, then getmax writes the record of female babies born in 2011 with the greatest count.

Implementation Constraints
You are provided a class named Command that represents a single command. That class provides the func-
tionality to obtain the next command from the input command file and parse it. It stores the command’s
parameters in private data members but it also provides methods to get the type of command and the com-
mand’s arguments. If it encounters any bad commands, it returns appropriate error values. The Command
class interface and its implementation are stored on the server in two separate files named command.h and
command.o. In particular you are not given the source code from which command.o was compiled. You will
not have access to the source code of command.o, because it is not necessary. Your main program must use
this Command class as its means of obtaining the commands. You need to read the command.h file to see what
public methods it provides and design your program to use these methods.
You are also given the interface to a class named Babyname. The Babyname class represents a single Babyname
record, i.e., the data contained in a single row of the CSV file. The interface includes a few public methods

4

CSci 235 Software Design and Analysis II
Programming Project 1

Prof. Stewart Weiss

and four friend functions. If friend functions are a new concept for you, do not fear - they will be explained
in class. Your job is to write an implementation for this interface. You are not allowed to alter the interface
in any way. The interface is included at the end of this assignment but it is also contained in the header
file babyname.h on the server, the exact location to be given in class. Your implementation must be named
babyname.cpp or babyname.cxx.
Your main program is responsible for opening input files, reading from and writing to files, and closing
files. It is also responsible for checking the correctness of the command line arguments and issuing any error
messages related to the command line. If you are not experienced in using command line arguments, please
read my notes on the topic here:
http://www.compsci.hunter.cuny.edu/~sweiss/resources/cmmdlineargs.pdf.
Your program should create a class that represents the entire data set. This class should store the data in an
array (or a vector), and provide methods for populating the array from an input stream, sorting the array,
writing the array data to an output stream and getting the various maximal values needed by the getmax
command. It should hide all details from the client (main) and should not read from or write to a file. I
repeat, it does not perform any file I/O, instead writing to and from streams.
In order to sort with multiple keys, you will need to use a stable sorting algorithm. The simple insertion
sort algorithm is a stable sorting algorithm and I strongly suggest that you use it, otherwise you will make
things more complicated than they need to be. If you did not learn insertion sort in the prerequisite class,
then look at Listing 11-3 in Walls and Mirrors or look it up in another textbook. You were supposed to
learn that a sorting algorithm is stable if it preserves the relative order of equal keys. If you never did, then
read more from your textbook.
All class interfaces and implementations are to be in separate files from each other and from the main
program. Thus, your project will have at least the following files: a main file, an interface for the Command
class, an object file for the Command class, an interface and implementation for the Babyname class, an interface
for the dataset class (or whatever you want to call it), and an implementation file for that class.

Advice
You should start right away! This program does not require you to write much code (more than you are
used to perhaps, but less than future assignments will require), but it will take some time.
You should modularize your design so that you can test it regularly. You can implement methods that
perform one task at a time. This way, if you run out of time, at least parts of your program will be
functioning properly.
You should backup your code after you have spent some time working on it. Save it to a flash
drive, email it to yourself, upload it to your Google drive, anything that gives you a second (or
maybe third copy). Murphy’s Law is always in force - things can go wrong at the last minute,
so do not take a chance on not having something to submit.

Programming Rules
Your program must conform to the programming rules described in the Programming Rules document on
the course website. It is to be your own work alone.

Grading Rubric
The program will be graded based on the following rubric.

• Compiling on a cslab machine: 30%

• Correctness of the implementation 40%

• Performance 5%

• Design (modularity and organization) 10%

• Documentation: 10%

5

http://www.compsci.hunter.cuny.edu/~sweiss/resources/cmmdlineargs.pdf

CSci 235 Software Design and Analysis II
Programming Project 1

Prof. Stewart Weiss

• Style and proper naming: 5%

This implies that a program that does not compile on a lab computer cannot receive more than 70 points.
Some implementations might be more efficient in terms of running time than others. Although you will not
have learned enough to write this program in a very efficient way, there are certain programming decisions
that can lead to very poor performance or to acceptable performance. The performance component of 5%
will be given if the program is reasonably efficient.

Submitting the Assignment
This assignment is due by the end of the day (i.e. 11:59PM, EST) on September 29, 2016. Hopefully your
experience submitting the first assignment has educated you so that submitting the second will be easy.
There is a directory in the CSci Department network whose full path name is
/data/biocs/b/student.accounts/cs235_sw/projects/project1.
That is where your submission will go. In order to put it there you must follow these steps. First you
will create a zip file containing your source code, including the header file command.h and the object file
command.o. To do this, create a directory named proj1_username where username is replaced by your login
name, and put all of your files into that directory. Do not place anything else into this directory. You will
lose 1 point for each file that does not belong there. With all files in your directory, change directory so that
proj1_username is in the current directory and run the command

zip -r proj1_username.zip ./proj1_username

This will compress all of your files into the file named proj1_username.zip. Then you will use the program
submit235project to deposit the zip file into the directory. The program requires two arguments: the
number of the assignment and the pathname of your zip file. For example, if your username on our system is
Bugs.Bunny and your zip file is named proj1_Bugs.Bunny.zip and it is in your current working directory
(say your home directory) then you would type

/data/biocs/b/student.accounts/cs235_sw/bin/submit235project 1 proj1_Bugs.Bunny.zip

The program will create the file
/data/biocs/b/student.accounts/cs235_sw/projects/project1/proj1_Bugs.Bunny.zip.
You will not be able to read this file, nor will anyone else except for me. But you can verify that the command
succeeded by typing the command
ls -l /data/biocs/b/student.accounts/cs235_sw/projects/project1

and making sure you see your file and that its size is the same as the size of the original proj1_Bugs.Bunny.zip.

If you decide to make any changes and resubmit, just run the command again and it will replace the old file
with the new one. Do not try to put your file into this directory in any other way - you will be unable to do
this.
If you put a solution there and then decide to change it before the deadline, just replace it by the new
version. Once the deadline has passed, you cannot do this. I will grade whatever version is there at the end
of the day on the due date. You cannot resubmit the program after the due date.

6

CSci 235 Software Design and Analysis II
Programming Project 1

Prof. Stewart Weiss

The Babyname Class Interface

#inc lude "command . h "

c l a s s Babyname
{
pub l i c :

/∗∗ Babyname () − de f au l t con s t ruc to r ∗/
Babyname () ;

/∗∗ s e t () − s e t method f o r the c l a s s
∗ a s s i g n s g iven va lue s to the member va r i ab l e s , whi l e v a l i d a t i n g va lue s
∗ method ensure s that a l l parameters are with in the a l lowed ranges
∗ as de f ined in the s p e c i f i c a t i o n
∗ @param in t year [in] b i r th year
∗ @param Gender gender [in] baby ’ s gender
∗ @param Ethn i c i ty e t hn i c i t y [in] mother ’ s e t hn i c i t y
∗ @param s t r i n g name [in] name o f baby
∗ @param in t count [in] f requency (see comments)
∗ @param in t rank [in] rank (see comments)
∗ @pre none
∗ @post ob j e c t i s a s s i gned a l l v a l i d va lue s
∗/

void s e t (i n t year ,
Gender gender ,
Ethn i c i ty e thn i c i t y ,
s t r i n g name ,
i n t count ,
i n t rank

) ;
/∗∗ get () − get method f o r the c l a s s
∗ r e t r i e v e s va lue s o f the member va r i ab l e s , and pas s e s to corre spond ing
∗ parameters .
∗ @param in t year [out] b i r th year
∗ @param Gender gender [out] baby ’ s gender
∗ @param Ethn i c i ty e t hn i c i t y [out] mother ’ s e t hn i c i t y
∗ @param s t r i n g name [out] name o f baby
∗ @param in t count [out] f requency (see comments)
∗ @param in t rank [out] rank (see comments)
∗ @pre none
∗ @post ob j e c t i s a s s i gned a l l v a l i d va lue s
∗/

void get (i n t & year ,
Gender & gender ,
Ethn i c i ty & e thn i c i t y ,
s t r i n g & name ,
i n t & count ,
i n t & rank

) ;

/∗∗ pr in t () − p r i n t s the baby name data onto the g iven ostream
∗ assuming i t i s a l r eady open f o r wr i t ing , in the format s p e c i f i e d
∗ in the ass ignment .
∗ @param ostream s [inout] ostream opened f o r wr i t i ng

7

CSci 235 Software Design and Analysis II
Programming Project 1

Prof. Stewart Weiss

∗ @pre the ob j e c t has va l i d data
∗ @post i f the ob j e c t has va l i d data , then i t i s wr i t t en to ostream
∗ in the s p e c i f i e d format and the ostream i s updated
∗/

void p r i n t (ostream & s) ;

/∗∗ Seve ra l f r i e nd func t i on s that perform s im i l a r ta sk s ;
∗ Each i s g iven two Babyname ob j e c t s by constant r e f e r e n c e and
∗ r e tu rn s t rue or f a l s e depending on whether one i s l e s s than or equal to
∗ the other .
∗ is_less_by_rank (l t , r t) i s t rue i f and only i f :
∗ b i r th year o f l t < b i r th year o f r t
∗ or they are equal and gender o f l t < gender o f rt ,
∗ or they are equal and e t hn i c i t y o f l t < e t hn i c i t y o f rt ,
∗ or they are equal and rank o f l t < rank o f r t .
∗ is_less_by_name (l t , r t) has the same l o g i c except in the l a s t
∗ case when name r ep l a c e s rank .
∗ The two is_equal f unc t i on s re turn true i f and only i f year , gender ,
∗ and e t hn i c i t y are equal and in the case o f is_equal_name , the names
∗ are i d e n t i c a l , and in the case o f rank , the ranks are i d e n t i c a l .
∗/

f r i e nd bool is_less_by_rank (const Babyname & l t , const Babyname & r t) ;
f r i e nd bool is_equal_rank (const Babyname & l t , const Babyname & r t) ;
f r i e nd bool is_less_by_name (const Babyname & l t , const Babyname & r t) ;
f r i e nd bool is_equal_name (const Babyname & l t , const Babyname & r t) ;

p r i va t e :
i n t birth_year ; // 2011 through 2014
Gender baby_gender ; // male or female
Ethn i c i ty mother_ethnic ity ; // as ian , black , h i span ic , or white
s t r i n g baby_name ; // any va l i d s t r i n g
i n t name_count ; // >= 0
in t name_rank ; // > 0

} ;

8

