
CSci 235 Software Design and Analysis II
Programming Project 2

Prof. Stewart Weiss

Programming Project 2: Recursion
Due date: Oct. 27, 11:59 PM EST.

Summary
This assignment is an exercise in writing a backtracking program using recursion; your program must use
recursion to solve the given problem. The program that you are to write is run from the command line and
is given at least one argument, which is the name of a file containing a list of words. We will call this file
the dictionary. If there is just one argument on the command line, the program enters an interactive loop
in which it repeatedly prompts the user to enter a string of characters. The string may be any sequence
of characters that can be typed on the keyboard. Henceforth we call this string the source word. The
objective of the program, having been given a source word, is to find all words that are rearrangements of
one or more of the characters in the source word, that are also in the dictionary. For example, if the source
word is

carat

and the dictionary contains the words at, arc, art, car, cart, cat, rat, and tar, then the program would
display each of these words, one per line, in sorted order:

arc
art
at
car
cart
cat
rat
tar

The words it displays are words in the dictionary that are either substrings of the source word or words
that are permutations of the substrings. We will call these words solutions. A word is a solution if it is
a substring of the source word or a permutation of a substring. The program must not display duplicate
solutions.
The optional second command-line argument is the pathname of a file that contains a list of words to use as
source words, one per line. If it is present, the program does not enter the above-described interactive loop.
Instead it reads from this file and processes the words in it one by one. Further details follow below.

Objectives
The objectives of this first programming project are for you to master the following tasks:

• working with multi-file programs using separate compilation of the program units

• working with existing code

• reading data from input files

• writing data to output files

• using and understanding command line arguments

• writing a backtracking program using recursive functions

1

CSci 235 Software Design and Analysis II
Programming Project 2

Prof. Stewart Weiss

• using arrays and/or vectors

• writing class interfaces and their implementations

Many of the skills that you need to complete this project are based on the material covered in CSci 135, but
some, like recursion, are topics taught in CSci 235.

Solving This Problem
The solution to this problem is not easy to derive on your own, and so I provide an outline and description
of how to solve it. Your task is to convert this description into code.
One obvious way to solve this problem is to generate all possible words from the source word and check if
each one is in the dictionary. This is called a brute force solution. This, however, is extremely inefficient
because, if we let N be the length of the source word, the number of possible words that are substrings
of the word or permutations of these substrings is proportional to N !. If the dictionary has M words in
it, the search for each of these words would require M logM steps. The total number of steps would be
proportional to N ! ·M log M . This is unacceptable. Your program is not allowed to enumerate all possible
words. It must be “smarter” than this.
Suppose that the source word S has length N . Let 0 < k < N and suppose that the string w = a0a1a2...ak
is a permutation of some of the letters in the source word. Suppose that z = b0b1b2...bN−k−1is a string
consisting of the letters in S that are not in w. (It does not matter what order the letters are in z.) There
are a few possibilities:

1. The word w itself is in the dictionary.

2. There is at least one word that starts with w in the dictionary but w itself is not in the dictionary.

3. No word is in the dictionary that starts with w.

To illustrate, suppose our source word is carat and that w= car. The first case would be that the dictionary
contains the word car. The second would be that it contains the words cart and carat but not car. The
third would be that it does not contain any words starting with car.
We can begin by initializing an empty list of solutions. Given w, we can first check whether w is in the
dictionary. If it is, we add it to the list of solutions we have found. We next check whether w is a prefix of
a word in the dictionary. If it is, then w is a partial solution to our problem and we want to extend it to a
solution by picking each letter in z and appending it to w and checking whether this is either a solution or
a partial solution. This is the recursive part of the algorithm - it grows the partial solution by appending a
character to the end of the word and checking recursively that it is a prefix of a solution. If, on the other
hand, w is not a prefix of any word in the dictionary, then there is no point in appending characters to it
and recursively trying those words. Instead, we just return from this recursive call, passing back the result
that w is not a prefix of any word in the dictionary. This is the backtracking step.
Using our carat example, suppose that w =car and z =at. Suppose car is in the dictionary. Then the
algorithm would append car to the list of solutions. Whether or not car is in the dictionary, it next checks
whether car is a prefix of a word in the dictionary. Suppose the dictionary contains cart but neither cara
nor carat. The function that checks whether car is a prefix of a dictionary word returns that it is, so our
algorithm first appends the a to car and recursively checks whether cara is a solution or partial solution. It
discovers that it is not. After it does this, it removes the a from cara, appends the t and recursively checks
whether cart is a solution or a partial solution. In this recursive call, it discovers that cart is a solution
and appends cart to the list of solutions. But it then discovers that cart is not a prefix of any words in the
dictionary (besides itself) so it makes no further recursive calls.
In short, the recursive function, given the non-null word w, does three things in this order:

• Checks whether w is in the dictionary;

• Checks whether w is a prefix of a word in the dictionary;

2

CSci 235 Software Design and Analysis II
Programming Project 2

Prof. Stewart Weiss

• If w is a prefix of a word in the dictionary, it tries appending each letter from the remaining characters
of S not in w to see if this extends to a partial solution (i.e., recursively).

Your task is to convert this description to C++ code. You will discover that you need two different kinds of
dictionary searches: one that checks whether a word is in the dictionary, and one that checks if it is a prefix
of a word in the dictionary.

The Program Input
Your program is given the pathnames of one or two text files on its command line, as in

$ findwords ../../mydict

or

$ findwords data/dictionary testwords

You may assume that the first file named on the command line contains a sorted list of words, one per line.
A word is any sequence of non-blank characters, including digits and punctuation marks. Thus, #$12ghy is
a valid word and so is under_score. There will be no duplicate words in the file, and no uppercase letters in
the file. Therefore, you will not find a word such as Europe in the file. The words are sorted in the standard
collating sequence. For ordinary one-byte characters, this is just the ASCII ordering. You may assume that
no word in the dictionary has more than 32 characters.
If a second argument is provided, this is also a list of words, one per line, with no word longer than 32
characters, and with no uppercase letters. We call this the source word file. In the example above, the
source word file is named testwords.
If no filename is supplied on the command line, it is an error. If either filename does not exist or cannot
be opened for reading by the program, for any reason, it is an error. The program should display an error
message if any of these conditions occur, and it should be as specific as possible. It is not enough for it to
output something like “could not open file.” The error message should be written to the standard error
stream (cerr in C++, stderr in C) and then it should exit.
The program should store the dictionary in a suitable data structure in memory for efficient access, and if
the second file is present, it should open it for reading but not store it in memory.

Computational Tasks
If there is just one argument, then after the program has read and stored the dictionary, it should repeatedly
prompt the user to enter a string of at least 2 and at most 32 characters. If the user enters a word that is
not of length between 2 and 32 characters, the program should display a suitable message to ask the user to
try again. Once the user has entered a word of the correct length, it displays all words that are substrings or
permutations of substrings of the user’s word that are also in the dictionary. If the user enters any uppercase
letters, the program should convert them to lowercase before it tries to form words. It should display these
words in sorted order using the ASCII collating sequence. If there are duplicates they should not be printed.
When the program has finished displaying the words, it asks the user whether she wants to continue or to
quit. If the user chooses to quit, the program terminates.
If there is a second argument, the program should not do anything interactively. Instead it should read the
words from the second file one at a time and compute the valid substrings and permutations in the same way
as is described in the preceding paragraph. For each source word, it should append the list of such words to
an output file whose name is the source word file with an extension “.out”. So, for the above example, it
would append to the file testwords.out. It should first write the source word, then the list of its subwords,
then a blank line, as in

carat
arc

3

CSci 235 Software Design and Analysis II
Programming Project 2

Prof. Stewart Weiss

art
at
car
cart
cat
rat
tar

Implementation Constraints
• I have provided the public part of a Dictionary class as an abstract class interface. You must create
a concrete class that implements this class. The Dictionary class interface is at the end of this
document. Your Dictionary class must encapsulate the dictionary data and provide the two methods
in the interface. These are a constructor and a method that checks whether a prefix of a given word is
a prefix of a word in the dictionary. You have not yet learned about virtual functions, but by the time
you start this, you will have learned about them. You may safely ignore the virtual keyword and the
“=0” for now.

• Your program needs to sort. You may pick any sorting algorithm that you know.

• Not required but strongly recommended is to create a class to represent a word and give that class
functions to check the validity of the word and find its subwords that are in the dictionary.

• Your main program is responsible for opening input files, reading from and writing to files, and closing
files. It is also responsible for checking the correctness of the command line arguments and issuing
any error messages related to the command line. If you are not experienced in using command line
arguments, please read my notes on the topic here:
http://www.compsci.hunter.cuny.edu/~sweiss/resources/cmmdlineargs.pdf.

• Only the main program is allowed to read from or write to files or devices. Class methods must operate
on streams.

• All class interfaces and implementations are to be in separate files from each other and from the main
program.

Programming Rules
Your program must conform to the programming rules described in the Programming Rules document on
the course website. It is to be your own work alone.

Grading Rubric
The program will be graded based on the following rubric.

• A program that cannot run because it fails to compile or link on a cslab host loses 80%. The remaining
20% will be assessed using the rest of the rubric below.

• Meeting the requirements of the assignment: 50%

• Performance 10%

• Design (modularity and organization) 15%

• Documentation: 20%

• Style and proper naming: 5%

This implies that a program that does not compile on a lab computer cannot receive more than 20 points.
Some implementations might be more efficient in terms of running time than others. Although you will not
have learned enough to write this program in a very efficient way, there are certain programming decisions
that can lead to very poor performance or to acceptable performance. The performance component of 5%
will be given if the program is reasonably efficient.

4

http://www.compsci.hunter.cuny.edu/~sweiss/resources/cmmdlineargs.pdf

CSci 235 Software Design and Analysis II
Programming Project 2

Prof. Stewart Weiss

Submitting the Assignment
This assignment is due by the end of the day (i.e. 11:59PM, EST) on October 27, 2016. You must create
a multiple-file solution. Create a directory named username_project2. Put all project-related source-code
files into that directory. Do not place any executable files or object files into this directory. You will lose 1
point for each file that does not belong there. With all files in your directory, run the command

zip -r username_project2.zip ./username_project2

This will compress all of your files into the file named username_project2.zip.
Before you submit the assignment, make sure that it compiles and runs correctly on one of the cslab
machines. Do not enhance your program beyond this specification. Do not make it do anything except what
is written above.
You are to submit the zip file by running the program submit235project, which it requires two arguments:
the number of the assignment and the pathname of your zip file: enter the command

/data/biocs/b/student.accounts/cs235_sw/bin/submit235project 2 username_project2.zip

where username_project2.zip is replaced by the name of your zip file. If you decide to make any changes
and resubmit, just run the command again and it will replace the old file with the new one. Do not try to
put your file into this directory in any other way - you will be unable to do this. Once the deadline has
passed, you cannot do this. I will grade whatever version is there at the end of the day on the due date.
You cannot resubmit the program after the due date.

5

CSci 235 Software Design and Analysis II
Programming Project 2

Prof. Stewart Weiss

The Dictionary Class Interface

#i f n d e f __DICTIONARY_H__
#de f i n e __DICTIONARY_H__

#inc lude <s t r i ng>
#inc lude <vector>
#inc lude <fstream>

us ing namespace std ;

c l a s s Dic t ionary
{
pub l i c :

/∗∗ Dict ionary ()
∗ Constructor f i l l s d i c t i ona ry ob j e c t with words from the g iven input
∗ f i l e stream .
∗ @pre f i l e stream must be opened f o r read ing && must have one word

per l i n e and be in so r t ed order .
∗ @post d i c t i ona ry ob j e c t i s f i l l e d with words from f i l e in so r t ed order .
∗ @param i f s t r e am & f i l e [inout] stream to read
∗/

v i r t u a l Dic t ionary (i f s t r e am & f i l e)=0;

/∗∗ search ()
∗ @pre keyword != NULL and pre f i x_ length >= 0
∗ @param s t r i n g keyword [in] key to search f o r in d i c t i ona ry
∗ @param s i ze_t pre f i x_length [in] number o f i n i t i a l chars to match
∗ @return i n t
∗ I f p r e f i x_ length > 0 , then i f the re i s a word W in the d i c t i ona ry
∗ such that :
∗ W[0 . . pre f ix_length −1] i s i d e n t i c a l to keyword [0 . . pre f ix_length −1]
∗ then i t r e tu tn s i t s index in the d i c t i onary , e l s e −1.
∗ I f p r e f i x_ length == 0 , t h i s r e tu rn s an index i f and only i f the
∗ keyword matches a word in the l i s t exact ly , and −1 otherwi se .
∗/

v i r t u a l i n t search (s t r i n g keyword ,
s i z e_t pre f i x_length

)=0;
} ;

6

