
CSci 235 Software Design and Analysis II

Programming Project 3

Prof. Stewart Weiss

Programming Project 3: Linked Lists

Summary

In this assignment, you will use linked lists to create a simple contact list. The objectives of the assignment
are

• to give you experience in designing an ADT;

• to improve your C/C++ programing and software design skills; and

• to give you experience in programming linked lists and dynamically allocated data.

The project is to be completed in two phases:

1. In the �rst phase, you will create and submit an ADT for the contact list described below.

2. In the second phase, you will write an implementation of an ADT that I post, as well as a main program
that uses it. The ADT can not be the one you submitted .

The ADT is worth 25% of the grade and is due on November 7. The second part is worth 75% of the grade
and is due on November 17.

Requirements

The program must implement a contact list. Speci�cally, when the program starts up, it looks for a �le
named contactlist in the current working directory. If the program �nds the �le and opens it successfully,
it enters an interactive mode, which is described below; otherwise, it displays a message informing the user
that it could not open the contact list �le, after which it exits.

Contact List

A contact list consists of an unlimited number of records, each of which has three members:

• name, which consists in turn of two members:

� �rst name

� last name

• telephone number,

• email address.

Names are not necessarily unique; there may be multiple records with the same name. In this way multiple
telephone numbers and/or email addresses can be stored for the same person. Names and email addresses are
represented case-sensitively. In other words, Hunter and hunter are di�erent strings as far as this application
is concerned. First names and last names may each contain up to 32 characters, which may be letters,
hyphens (-), or apostrophes ('). Telephone numbers are strings that may contain up to 16 digits. They
cannot contain anything else. The application may display them with hyphens and parentheses, but these
are not stored in the record. Email addresses may be up to 127 characters, and must contain exactly one
'@' character. All characters to the right of the '@' must be letters, digits, or periods. The characters to
the left may be anything except a comma. The telephone number and/or email address �eld can be a null
string (a string with nothing in it.)

1

CSci 235 Software Design and Analysis II

Programming Project 3

Prof. Stewart Weiss

Contact List File

The contactlist �le must be in a speci�c format in order for the program to open it correctly. It must be a
comma-separated-values �le, with one record per line and individual members within the records separated
by commas. A record consists of the strings that are values of the �rst name, last name, telephone, email

address. For example, a record might look like

anthony,rocco,2121234567,rocco.cannon@blasting.com

No white space is allowed before or after the commas. If white space is found, this is an error. However, the
program is not required to validate the contactlist �le; it may assume it is in the proper form.

The Contact List ADT

The operations supported by the contact list ADT are stated informally below. Your �rst task will be to
re�ne them and create an ADT that supports them.

Operation and

Arguments

Description

display(ostream) The contact list is written to the given ostream in sorted order, by last
name as primary key and by �rst name as a secondary key. If there are
two records with identical primary and secondary key, the telephone
number is used as a tertiary key, and if need be the email address is the
quaternary key. This operations returns the number of records written.

insert(record) A single record is added to the contact list, provided that it is not an
exact duplicate of an existing record (same �rst and last name, same
telephone and same email address. This should return the number of
records inserted. Again, the keys are last name, �rst name, telephone
number, then email address.

insert(contact_list) Every record in the given contact list should be inserted to the existing
contact list, provided that none are exact duplicates. Those that are
duplicates are not inserted, and those that are not are inserted using the
same ordering as described for the insert operation above. This should
return the number of records successfully inserted into the list.

remove(record) The supplied record must contain at least a non-null last name and �rst
name. If the supplied record has either a null last name or a null �rst
name, this operation does nothing. Every record in the contact list whose
non-null members match the corresponding non-null members of the given
record is deleted from the list. For example, if the given record is
smith,john,2127725000,�� then all records with the name john smith

with telephone number 2127725000 are deleted. In other words, the email
address is ignored in this case.
This returns the number of records deleted.

size() This returns the number of records in the list.

save() This saves a copy of the current contactlist by writing it to a �le
named contactlist.bkp in the current working directory, overwriting
any such �le if it already exists. It returns the number of records written
to the contactlist.bkp �le. If it does not have permission to create the
�le, or if the �le cannot be written for any other reason, it returns -1.

2

CSci 235 Software Design and Analysis II

Programming Project 3

Prof. Stewart Weiss

Operation and

Arguments

Description

�nd(ostream, lastname,
�rstname)

Searches the list for all records whose last and �rst names match the given
names and displays them on the given (open) stream in the order in which
they occur in the contact list. It returns the number of records written to
the stream.

�nd(ostream, record) Displays all records whose non-null members match the non-null members
of the given record, in the order in which they occur in the contact list, on
the open stream. It returns the number of records written to the stream.

make_empty() This deletes all of the records in the list and returns the number of
records deleted.

ADT Rubric and Submission

The �rst phase requires that you submit the ADT that you design. The ADT must be written using the
operation contract model with pre- and post-conditions and UML syntax. It must list all parameters and
their types and what the return values are. It will be graded out of 25 points on its correctness (10 pts) (does
it describe the class accurately), its completeness (5 pts) (does it include everything that the class interface
should have), and its clarity (5 pts) (is it ambiguous or unclear). It will also be graded on the degree to
which it adheres to UML and the documentation standards (5 pts).

The ADT should be written as a plain text �le, not as a formatted document, nor as a PDF, and should
be named hwk3_adt_username , where username is your username on the Computer Science Department's
UNIX network. It should be submitted by running the command

/data/biocs/b/student.accounts/cs235_sw/bin/submitadt 3 hwk3_adt_username

The ADT part of the assignment is due by the end of the day (i.e. 11:59PM, EST) on November 7, 2016.

Implementation Requirements

Contact List Class

The contact list must be kept in sorted order of increasing last name as primary key, �rst name as secondary
key, telephone number as tertiary key, and email address as quaternary key. The display() operation will
make no more than a single pass through the list. The list must use a linked representation, either singly- or
doubly-linked. The implementations of insertions and deletions should make a single pass through the list
in the worst case.

Note. The list that you implement must not use any public functions other than those speci�ed in the ADT,

and those functions must have the exact signatures speci�ed in the ADT.

Main Program Requirements

After the contact list has been loaded into memory, the main program enters interactive mode, repeatedly
displaying a prompt and waiting for the user to enter a command. After a command is entered and the
program responds to it, the prompt is displayed again, unless the command was the quit command. The
set of commands that the application must support is listed below. The commands are case-sensitive; they
must be entered in lower case only. Words in italic are placeholders for user-supplied data.

Command Description

list List the entire contact list on standard output (the terminal window)
followed by the number of entries listed.

3

CSci 235 Software Design and Analysis II

Programming Project 3

Prof. Stewart Weiss

Command Description

insert Prompt the user to enter contact info: last name, �rst name, telephone
number, and email address. The user should be allowed to omit the
telephone number and/or the email address. It will display a simple
message indicating whether the contact was inserted or not. (E.g. record
inserted/record not inserted.)

delete Prompt the user to enter information to delete a record. The user must
supply a last name and a �rst name, and optionally, a telephone number
and/or email address. It will search for entries that match all of the
non-null data supplied by the user and delete them. It displays how many
were deleted.

�nd Prompt the user to enter information to �nd a record. The user can leave
any member blank. This will display on the standard output all records
whose non-null members match the non-null data items entered by the
user.

save Save the current state of the contact list to a �le named contactlist.bkp

in the current working directory, replacing that �le if it already exists.

quit Terminate the application.

You are free to decide how to allow the user to enter the various pieces of data for the commands, but
you must document your method well. For example, you can prompt for each item or use something like
�lastname=smith �rstname=john� etc. Your program is expected to ensure that only valid names are stored
in the contact list. You may assume that the user enters at least one correct character, so that a name is
never an empty string. The program should use the longest valid pre�x of the entered text as the name. For
example, all of these entered strings should be stored as the name �john�: john653, john, john$%^, and
john___.

Project Organization

Your project must consist of three separate �les, named exactly as follows, case-sensitively:

contactlist.h The class interface alone, with the exact set of public member functions speci�ed in the
ADT I provided, unmodi�ed. If you choose to create other classes that your contact list class
will use, then their interfaces should be placed into this �le.

contactlist.cpp The implementation of the class interface. If you de�ne any other classes in the contactlist.h
�le, then their implementations should be placed into this �le.

main.cpp This �le should contain the main program and all functions that it uses other than the member
functions of the contact list class.

Implementation Grading Rubric

The program will be graded based on the following rubric out of 100 points.

• A program that cannot run because it fails to compile or link on a cslab host loses 80%. The remaining
20% will be assessed using the rest of the rubric below.

• Meeting the requirements of the assignment: 50%

• Performance 10%

• Design (modularity and organization) 15%

4

CSci 235 Software Design and Analysis II

Programming Project 3

Prof. Stewart Weiss

• Documentation: 20%

• Style and proper naming: 5%

This implies that a program that does not compile on a lab computer cannot receive more than 20 points.
Some implementations might be more e�cient in terms of running time than others. Although you will not
have learned enough to write this program in a very e�cient way, there are certain programming decisions
that can lead to very poor performance or to acceptable performance. The performance component of 5%
will be given if the program is reasonably e�cient.

Submitting the Source Code

I will post the ADT you are to use for the implementation on November 8. You will have to implement that
ADT in the next phase. This assignment is due by the end of the day (i.e. 11:59PM, EST) on November
17, 2016. Once your program is �nished, you are to create a directory named project3_username, where
username is the same as above. Put all source code �les into that directory. Do not put executables, data
�les, or test �les in it. If I �nd any, you will lose three points for each �le that does not belong there. Zip
up this directory using the UNIX zip command, i.e.,

zip -r project3_username.zip ./project3_username

This will compress all of your �les into the �le named project3_username.zip.

Before you submit the assignment, make sure that it compiles and runs correctly on one of the cslab

machines. Do not enhance your program beyond this speci�cation. Do not make it do anything except what
is written above.

You are to submit the zip �le by running the program submit235project, which requires two arguments:
the number of the project and the pathname of your zip �le:

/data/biocs/b/student.accounts/cs235_sw/bin/submit235project 3 project3_username.zip

where project3_username.zip is replaced by the name of your zip �le. If you decide to make any changes
and resubmit, just run the command again and it will replace the old �le with the new one. Do not try to
put your �le into this directory in any other way - you will be unable to do this. Once the deadline has
passed, you cannot do this. I will grade whatever version is there at the end of the day on the due date.
You cannot resubmit the program after the due date.

5

