
CSci 235 Software Design and Analysis II
Programming Project 4

Prof. Stewart Weiss

Programming Project 4: Binary Search Trees

Summary

This assignment serves a few di�erent purposes. In a nutshell, your task is to re-implement the ContactList
class using a binary search tree instead of a list, and to modify the main program, whose user interface will
be augmented. This project should enforce the following principles:

• that one can implement the same interface using completely di�erent data structures;

• that the choice of data structure can radically a�ect the running time of the various methods;

• that, although some of an interface's methods are not used by one client program, another client might
use them; and

• that well-designed programs with low-coupled classes and highly modular design make code reuse
easier.

If your third project was less than perfect, and there were things that needed �xing outside of the linked list
implementation of the ContactList class, you should �x them before tackling this assignment. In any case,
you should try to reuse as much code as possible.

The details of the ContactList class are repeated below. Things that are di�erent from the third assignment
are italicized.

Requirements

The program must implement a contact list . Speci�cally, when the program starts up, it looks for a �le
named contactlist in the current working directory1. If the program �nds the �le and opens it successfully,
it displays on the console a message that it opened the �le and read in however many records it found, after
which it enters an interactive mode, which is described below; otherwise, it displays a message informing the
user that it could not open the contact list �le, after which it exits.

Contact List

A contact list consists of an unlimited number of records, each of which has three members:

• name, which consists in turn of two members:

� �rst name

� last name

• telephone number,

• email address.

Names are not necessarily unique; there may be multiple records with the same name. In this way multiple
telephone numbers and/or email addresses can be stored for the same person. Names and email addresses are
represented case-sensitively. In other words, Hunter and hunter are di�erent strings as far as this application
is concerned. First names and last names may each contain up to 32 characters, which may be letters,
hyphens (-), or apostrophes ('). Telephone numbers are strings that may contain up to 16 digits. They

1It is not named contactlist.csv, nor contactlist.txt, nor anything else!

1

CSci 235 Software Design and Analysis II
Programming Project 4

Prof. Stewart Weiss

cannot contain anything else. The application may display them with hyphens and parentheses, but these
are not stored in the record. Email addresses may be up to 127 characters, and must contain exactly one
'@' character. All characters to the right of the '@' must be letters, digits, or periods. The characters to
the left may be anything except a comma. The telephone number and/or email address �eld can be a null
string (a string with nothing in it.)

Contact List File

The contactlist �le must be in a speci�c format in order for the program to open it correctly. It must be a
comma-separated-values �le, with one record per line and individual members within the records separated
by commas. A record consists of the strings that are values of the �rst name, last name, telephone, email
address. For example, a record might look like

anthony,rocco,2121234567,rocco.cannon@blasting.com

No white space is allowed before or after the commas. If white space is found, this is an error. However, the
program is not required to validate the contactlist �le; it may assume it is in the proper form.

The Contact List ADT

The operations supported by the contact list ADT are stated informally below.

Operation and

Arguments

Description

display(ostream) The contact list is written to the given ostream in sorted order, by last
name as primary key and by �rst name as a secondary key. If there are
two records with identical primary and secondary key, the telephone
number is used as a tertiary key, and if need be, the email address is the
quaternary key. This operation returns the number of records written.

insert(record) The given record is added to the contact list, provided that it is not an
exact duplicate of an existing record (same �rst and last name, same
telephone and same email address. This returns the number of records
inserted. Again, the keys are last name, �rst name, telephone number,
then email address.

insert(contact_list) Every record in the given contact list should be inserted into the existing
contact list, provided that none are exact duplicates. Those that are
duplicates are not inserted; records are inserted using the same ordering
relation as described for the insert operation above. This returns the
number of records successfully inserted into the list.

remove(record) The supplied record must contain at least a non-null last name and �rst
name. If the supplied record has either a null last name or a null �rst
name, this operation does nothing. Every record in the contact list whose
non-null members match the corresponding non-null members of the given
record is deleted from the list. For example, if the given record is
smith,john,2127725000,�� then all records with the name john smith

with telephone number 2127725000 are deleted. In other words, the email
address is ignored in this case. This returns the number of records deleted.

size() This returns the number of records in the contact list.

save() This saves a copy of the current state of the contact list by writing it to a
�le named contactlist.bkp in the current working directory, overwriting
any such �le if it already exists. It returns the number of records written
to the contactlist.bkp �le. If it does not have permission to create the
�le, or if the �le cannot be written for any other reason, it returns -1.

2

CSci 235 Software Design and Analysis II
Programming Project 4

Prof. Stewart Weiss

Operation and

Arguments

Description

�nd(ostream, lastname,
�rstname)

This searches the contact list for all records whose last and �rst names
match the given names and displays them on the given (open) stream in
sorted order using the same ordering relation as the insert method. It
returns the number of records written to the stream.

�nd(ostream, record) This writes all records whose non-null members match the non-null
members of the given record, in the order in which they occur in the
contact list, on the open stream. It returns the number of records written
to the stream. If all �elds of the record are null, this writes nothing on the
stream and returns zero.

make_empty() This deletes all of the records in the contact list and returns the number
of records deleted.

Implementation Requirements

ContactList Class

The ContactList class must be implemented using a binary search tree, which is allowed to be an unbalanced
tree. The ordering relation of the tree is, by increasing last name as primary key, increasing �rst name as
secondary key, increasing telephone number as tertiary key, and increasing email address as quaternary key.
No member function shall visit any node in the tree more than once. The size() method should be O(1).
The display(), save(), and make_empty() methods should be O(n), where n is the size of the contact list.
The implementations of (single record) insertions, deletions, and �nds should be O(h), where h is the height
of the tree. The insertion of a contact list containing m records may take O(mh) time in the worst case.

Note. Your implementation must not use any public functions other than those speci�ed in the ADT, and
those functions must have the exact signatures speci�ed in the ADT. You are free to add private methods to
the ContactList class and are free to create auxiliary classes if you think they make the program better.

Main Program Requirements

After the contact list has been loaded into memory, the main program enters interactive mode, repeatedly
displaying a prompt and waiting for the user to enter a command. The prompt must display a menu

so that the user knows what commands are allowed . After a command is entered and the program
responds to it, the prompt is displayed again, unless the command was the quit command. The set of
commands that the application must support is listed below. The commands are case-sensitive; they must
be entered in lower case only, exactly as shown.

Command Description

list List the entire contact list on standard output (the terminal window)
followed by the number of entries listed.

insert Prompt the user to enter contact info: last name, �rst name, telephone
number, and email address. The user should be allowed to omit the
telephone number and/or the email address. It will display a simple
message indicating whether the contact was inserted or not. (E.g. record
inserted/record not inserted.)

merge Prompt the user for the pathname of a �le containing a contact list in the
same format as the contactlist �le described above. If the �le exists and
can be opened and is in the correct format, this �le's records are inserted
into the existing contact list, and a message will be displayed stating how
many records were inserted. If it fails for any reason, a message will be
displayed that it did not succeed.

3

CSci 235 Software Design and Analysis II
Programming Project 4

Prof. Stewart Weiss

Command Description

delete Prompt the user to enter information to delete a record. The user must
supply a last name and a �rst name, and optionally, a telephone number
and/or email address. It will search for entries that match all of the
non-null data supplied by the user and delete them. It displays how many
were deleted.

clear Delete all records from the contact list. It displays how many were deleted.

find Prompt the user to enter information to �nd a record. The user can leave
any member blank. This will display on the standard output all records
whose non-null members match the non-null data items entered by the
user. If all �elds are null, it displays nothing.

save Save the current state of the contact list to a �le named contactlist.bkp

in the current working directory, replacing that �le if it already exists.

quit Terminate the application.

You are free to decide how to allow the user to enter the various pieces of data for the commands, but
you must document your method well. For example, you can prompt for each item or use something like
�lastname=smith �rstname=john� etc. Your program is expected to ensure that only valid data is stored
in the contact list. You may assume that the user enters at least one correct character, so that a name is
never an empty string. The program should use the longest valid pre�x of the entered text as the name. For
example, all of these entered strings should be stored as the name �john�: john653, john, john$%^, and
john___. All telephone numbers and email addresses must be validated as well.

Project Organization

Your project must consist of three separate �les, named exactly as follows, case-sensitively:

contactlist.h The class interface alone, with the exact set of public member functions speci�ed in the
ADT I provided, unmodi�ed. If you choose to create other classes that your contact list class
will use, then their interfaces should be placed into this �le.

contactlist.cpp The implementation of the class interface. If you de�ne any other classes in the contactlist.h
�le, then their implementations should be placed into this �le.

main.cpp This �le should contain the main program and all functions that it uses other than the member
functions of the contact list class.

Implementation Grading Rubric

The program will be graded based on the following rubric, based on 100 points.

• A program that cannot run because it fails to compile or link on a cslab host loses 80%. The remaining
20% will be assessed using the rest of the rubric below.

• Meeting the requirements of the assignment, including performance requirements: 60%

• Design (modularity and organization): 10%

• Design of the user interface: 5%

• Documentation: 20%

• Style and proper naming: 5%

This implies that a program that does not compile on a lab computer cannot receive more than 20 points.
Some implementations might be more e�cient in terms of running time than others. The performance
requirements stated above will be the basis for evaluating your program's running time performance.

4

CSci 235 Software Design and Analysis II
Programming Project 4

Prof. Stewart Weiss

Submitting the Project

The ADT you are to use is below. This assignment is due by the end of the day (i.e. 11:59PM, EST) on
December 12, 2016. Once your program is �nished, you are to create a directory named project4_username,
where username is to be replaced by your username on our system. Put all source code �les into that directory.
Do not put executables, data �les, or test �les in it. If I �nd any, you will lose three points for each �le that
does not belong there. Zip up this directory using the UNIX zip command, i.e.,

zip -r project4_username.zip ./project4_username

This will compress all of your �les into the �le named project4_username.zip. Make sure that, when this
�le is unzipped, the �les are extracted into the directory project4_username.

Before you submit the assignment, make sure that it compiles and runs correctly on one of the cslab

machines. Do not enhance your program beyond this speci�cation. Do not make it do anything except what
is written above.

You are to submit the zip �le by running the program submit235project, which requires two arguments:
the number of the project and the pathname of your zip �le:

/data/biocs/b/student.accounts/cs235_sw/bin/submit235project 4 project4_username.zip

where project4_username.zip is replaced by the name of your zip �le. If you decide to make any changes
and resubmit, just run the command again and it will replace the old �le with the new one. Do not try to
put your �le into this directory in any other way - you will be unable to do this. Once the deadline has
passed, you cannot do this. I will grade whatever version is there at the end of the day on the due date.
You cannot resubmit the program after the due date.

UML Formatted ContactList ADT

/∗∗ \mainpage CSci 235 Fa l l 2016 Pro j e c t 4
∗ \ author Stewart Weiss
∗ \date Nov . 22 , 2016
∗
∗ This i s the Contact L i s t ADT f o r Pro j e c t 4 .
∗ In order to s p e c i f y a Contact L i s t ADT d e f i n i t i v e l y , the under ly ing type
∗ must be de f ined p r e c i s e l y . The f i r s t part o f t h i s f i l e conta in s the
∗ d e f i n i t i o n o f the Contact c l a s s , which depends upon a s t r u c tu r e c a l l e d Name .
∗/

The f o l l ow i n g c l a s s i s used by the Contact ADT. I t i s not documented
because i t i s s e l f −exp lanatory .
/∗∗/
c l a s s Name

+Name ()
+f i r s t () : s t r i n g
+l a s t () : s t r i n g
+s e t_ f i r s t (in fname : s t r i n g) : void
+se t_ la s t (in lname : s t r i n g) : void

/∗ Data members : ∗/
−fname : s t r i n g
−lname : s t r i n g

/∗∗/

5

CSci 235 Software Design and Analysis II
Programming Project 4

Prof. Stewart Weiss

The Contact c l a s s de f ined below i s needed by the ContactList ADT. This c l a s s i s
not documented e i t h e r because the methods are s imple a c c e s s o r s and mutators .
c l a s s Contact
{
pub l i c :

+Contact ()
+Contact (in person : Name, in tel_num : s t r i ng , in email_addr : s t r i n g)
+s e t (in fname : s t r i ng , in lname : s t r i ng , in tel_num : s t r i ng ,

in email_addr : s t r i n g) : void
+get_name (out fu l lname : Name&): void
+get_te l (out tel_num : s t r i n g &): void
+get_email (out email_addr : s t r i n g &): void
+set_name (in fu l lname : Name) : void
+se t_te l (in tel_num : s t r i n g) : void
+set_email (in email_addr : s t r i n g) : void

p r i va t e :
−name : Name
−te l ephone : s t r i n g
−emai l : s t r i n g

} ;
/∗∗

CONTACTLIST CLASS PUBLIC MEMBERS

∗∗/
/∗∗ Constructor :
∗ Creates an empty contact l i s t .
∗ @pre None
∗ @post The ob j e c t i s empty .
∗/
+ContactList ()

/∗∗/
/∗∗ Destructor
∗ Dele t e s a l l memory used by the contact l i s t .
∗ @pre None
∗ @post The l i s t i s empty
∗ Note that t h i s i s not c a l l e d by any code .
∗/

+~ContactList () ;
/∗∗/

/∗∗/
/∗∗ d i sp l ay (output)
∗ Outputs the contact l i s t in so r t ed order by l a s t name , with the f i r s t name
∗ as the secondary key . The data i s spaced on the l i n e so that each data f i e l d
∗ i s a l i gned with the one above . The implementation i s f r e e to choose the
∗ s p e c i f i c f i e l d widths .
∗
∗ @pre The ostream has been opened .
∗ @post The contac t s in the contact l i s t are appended to the ostream in

6

CSci 235 Software Design and Analysis II
Programming Project 4

Prof. Stewart Weiss

∗ so r t ed order , by l a s t name , and then by f i r s t name in case l a s t
∗ names are i d e n t i c a l . I f the re are two reco rd s with i d e n t i c a l primary
∗ and secondary key , the te l ephone number i s used as a t e r t i a r y
∗ key , and i f need be the emai l address i s the quaternary key .
∗ @param [inout] ostream output The stream f o r outputt ing the contact l i s t .
∗ @returns i n t The number o f r e co rd s wr i t t en
∗/

+d i sp l ay (inout output : ostream&): i n t e g e r
/∗∗/

/∗∗/
/∗∗ i n s e r t (record_to_insert)
∗ I n s e r t s a g iven record in to the contact l i s t . I f the record i s an exact
∗ dup l i c a t e o f an e x i s t i n g record , i t w i l l not be added .
∗
∗ @pre record_to_insert i s a va l i d Contact . I f the re i s not an exact copy
∗ o f record_to_insert a l r eady in contact l i s t , then record_to_insert
∗ i s i n s e r t e d in to the l i s t at an un sp e c i f i e d po s i t i o n .
∗ @returns i n t The t o t a l number o f contac t s s u c c e s s f u l l y i n s e r t e d in to the l i s t .
∗/

+i n s e r t (in record_to_insert : Contact) : i n t e g e r
/∗∗/

/∗∗/
/∗∗ i n s e r t (c on t a c t_ l i s t)
∗ I n s e r t s a l l contac t s in c on t a c t_ l i s t i n to the cur rent contact l i s t .
∗ I f any o f the contac t s in c on t a c t_ l i s t are dup l i c a t e s o f an e x i s t i n g contact ,
∗ they w i l l not be i n s e r t e d . The contac t s are i n s e r t e d at un sp e c i f i e d p o s i t i o n s .
∗
∗ @pre A contact l i s t c o n s i s t i n g o f only va l i d Contacts .
∗ @post The contact l i s t conta in s a l l p r ev i ou s l y e x i s t i n g contac t s p lus a l l
∗ contac t s from con ta c t_ l i s t that are not exact cop i e s o f r e co rd s
∗ a l ready in the e x i s t i n g contact l i s t .
∗ @returns i n t The t o t a l number o f contac t s s u c e s s f u l l y i n s e r t e d in to the l i s t .
∗/

+i n s e r t (in c on t a c t_ l i s t : ContactList) : i n t e g e r
/∗∗/

/∗∗/
/∗∗ remove (record_to_delete)
∗ Removes a l l contac t s which match the non−nu l l f i e l d s o f record_to_delete .
∗ Every contact in the contact l i s t whose members match every non−nu l l member
∗ o f record_to_delete i s removed from the l i s t .
∗
∗ @pre record_to_delete i s a contact conta in ing at l e a s t a non−nu l l l a s t
∗ name and a non−nu l l f i r s t name .
∗ @post The contact l i s t w i l l conta in no contac t s which match the non−nu l l
∗ f i e l d s o f record_to_delete .
∗ @returns i n t The t o t a l number o f contac t s s u c c e s s f u l l y removed from the l i s t .
∗/

+remove (in record_to_delete : Contact) : i n t e g e r
/∗∗/

/∗∗/

7

CSci 235 Software Design and Analysis II
Programming Project 4

Prof. Stewart Weiss

/∗∗ s i z e ()
∗ Returns the t o t a l number o f contac t s in the contact l i s t .
∗
∗ @pre None .
∗ @post None .
∗ @returns i n t The t o t a l number o f contac t s in the contact l i s t .
∗/

+s i z e () : i n t e g e r
/∗∗/

/∗∗/
/∗∗ save ()
∗ This saves a copy o f the cur rent c o n t a c t l i s t by wr i t i ng i t to a f i l e named
∗ c o n t a c t l i s t . bkp in the cur rent working d i r e c to ry , ove rwr i t i ng any such f i l e
∗ i f i t a l r eady e x i s t s . I t must have wr i t e permis s ion in the working d i r e c t o r y .
∗
∗ @pre None .
∗ @post The c o n t a c t l i s t . bkp f i l e in the cur rent working d i r e c t o r y conta in s
∗ the contents o f the cur rent copy o f the in−memory contact l i s t . I f
∗ the f i l e e x i s t e d be fore , i t i s r ep l aced .
∗ @returns i n t The number o f contac t s wr i t t en to the f i l e , or −1 i f the wr i t e
∗ was not a l lowed .
∗/

+save () : i n t e g e r
/∗∗/

/∗∗/
/∗∗ f i nd (output , lastname , f i r s tname)
∗ Writes onto the output stream a l l contac t s whose l a s t and f i r s t names match
∗ the g iven names .
∗
∗ @pre lastname i s a va l i d name and f i r s tname i s a va l i d name and output
∗ i s an open iostream .
∗ @post Any contac t s whose f i r s t and l a s t names match the g iven f i r s t and
∗ l a s t names are appended to the ostream .
∗ @returns i n t The number o f r e co rd s wr i t t en to the stream .
∗/

+f i nd (inout output : ostream&, in lname : s t r i ng , in fname : s t r i n g) : i n t e g e r
/∗∗/

/∗∗/
/∗∗ f i nd (output , record_to_find)
∗ Writes onto the output stream a l l contac t s that match the non−nu l l f i e l d s
∗ o f record_to_find .
∗
∗ @pre record_to_find i s a va l i d contact and output i s an open ostream .
∗ @post Any contac t s whose non−nu l l members match the non−nu l l members o f
∗ the record_to_find are appended to the ostream , so r t ed by l a s t name ,
∗ and then f i r s t name in case o f t i e s .
∗ @returns i n t The number o f r e co rd s wr i t t en to the stream .
∗/

+f i nd (inout output : ostream&, in record_to_find : Contact) : i n t e g e r
/∗∗/

8

CSci 235 Software Design and Analysis II
Programming Project 4

Prof. Stewart Weiss

/∗∗/
/∗∗ make_empty ()
∗ Dele t e s a l l o f the contac t s in the contact l i s t .
∗
∗ @pre None .
∗ @post The contact l i s t becomes an empty l i s t .
∗ @returns i n t The number o f r e co rd s de l e t ed .
∗/

+make_empty () : i n t e g e r
/∗∗/

9

