
CSci 235 Software Design and Analysis II

Assignment 5

Prof. Stewart Weiss

Assignment 5:

Processing New York City Open Data Using Binary Search Trees

Due date: December 7, 11:59PM EST.

1 Summary

This assignment serves a few di�erent purposes. In a nutshell, your task is to re-implement the HotspotList
class using a binary search tree instead of a list, and to modify the main program, whose user interface
will be modi�ed slightly. This project should enforce the following principles:

• that one can implement the same interface using completely di�erent data structures;

• that the choice of data structure can radically a�ect the running time of the various methods;

• that, although some of an interface's methods are not used by one client program, another client might
use them; and

• that well-designed programs with low-coupled classes and highly modular design make code reuse
easier.

If your second programming project was less than perfect, and there were things that needed �xing outside of
the linked list implementation of the HotspotList class, you should �x them before tackling this assignment.
In any case, you should try to reuse as much code as possible.

The details of the Hotspot and HotspotList classes are repeated here. Things that are di�erent from the
second programming project are italicized.

2 Program Inputs

Your program will obtain its hotspot list data from a �le whose pathname is given as the �rst command line
argument. It will also obtain the sequence of commands it must carry out from a �le given as the second
command line argument. There is no other input provided. In particular, there is no user interaction. To
repeat, the program must get its input from command line arguments. It does not prompt for the name of
a �le, it does not assume the �le has some �xed name hard-coded into it. It must process its command line!

2.1 Input File Details

The program is given the pathnames of two text �les as command line arguments. The �rst is the pathname
of a �le containing a data set in CSV (comma separated values) format. The second is the pathname of
a �le containing a list of commands that your program needs to perform. For example, if the program is
named proj4_sweiss, and the data is stored in a �le in my working directory named hotspots.csv and
the commands are in a �le named hotspot_commands, then I would type

proj4_sweiss hotspots.csv hotspot_commands

to run my program on the hotspots.csv dataset using the commands in the �le hotspot_commands. It is
an error if someone attempts to run the program without two �le names. The program must check that two
arguments were given on the command line and that each �le can be opened for reading by the program.
If there are any errors, such as missing arguments, arguments that do not exist or cannot be opened, the
program must display a short but descriptive error message that indicates the nature of the error (such as
�the file hotspot_commands cannot be opened.�) It is not enough to write something like �could not

open file.� The error message should be written to the standard error stream (cerr in C++, stderr in
C). Your program will not be able to distinguish whether the �le does not exist or whether the user does
not have permission to open it. It is enough to report that it could not be opened, for whatever reason.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
1

CSci 235 Software Design and Analysis II

Assignment 5

Prof. Stewart Weiss

2.1.1 Hotspot Files

Every hotspot �le that the program reads or write is a CSV �le. Recall from the previous assignment that
a CSV �le is a �le in which each line represents a record of some type, and within each line, the �elds or
members of that record are separated by commas. Commas separate the �elds; if they appear within any
�eld, the �eld itself is enclosed in double-quote characters. The CSV �les in this assignment may contain
commas within �elds, and so they must be parsed with that in mind. Hotspot �les can not contain

headers or blank lines; the number of lines in the �le equals the number of records exactly.

The data �les for this assignment were obtained from a single �le downloaded from the webpage
https://goo.gl/RG6QBX

as a CSV �le. They were then edited to suit the parameters of this assignment. Each line in a hotspot �le
contains nine comma-separated �elds. The following table gives their names, descriptions, and data types.

Field Name Description Value Type

ObjectId Identi�cation number automatically generated by ArcMap map
software.

Number

Boro Borough of New York City. MN = Manhattan BX = Bronx BK =
Brooklyn QU = Queens SI = Staten Island

Text

Type Type of WiFi provided by franchise. Text
Provider Franchise that is providing the Wi� connection. Text
Name The name of the location where the WiFi is located. Text
Location A brief description of where the WiFi point is. Text
Latitude Latitude: Points that fall north or south of the Equator, in degrees.

(North is positive)
Number

Longitude Longitude: Points that fall east or west of the Prime Meridian, in
degrees. (East is positive)

Number

SSID The name of the WiFi seen on people's devices. Text

No white space is allowed before or after the commas that separate �elds. If white space is found, this is an
error. White space will be found in various text �elds however. There may be double-quote characters in
�elds as well. If a �led contains a double-quote, it will be a sequence of two double quotes with no intervening
space. To illustrate, the following are both valid records. They are wrapped because they are too long to �t
across the width of this page:

1340,QU,Limited Free,SPECTRUM,"Phil ""Scooter"" Rizzuto Park",South side of Park,

40.694095,-73.821334,GuestWiFi

864,MN,Free,Manhattan Down Alliance,8,"182-188 Front Street, New York, NY 10038, USA",

40.7065010001,-74.0045012998,#DwtwnAllianceFreeWiFi

Notice the double quotes in the �rst line and the commas and spaces embedded in the 6th�eld, the LOCATION
data of the second line. Fields that contain embedded commas will always be enclosed in double quotes in
a valid �le. The program is required to validate the hotspot �le; it may not assume that it is in the proper
form.

2.1.2 Commands File

The set of commands that the application must support, together with their descriptions, is listed below.
The commands are all in lower case, but their arguments can be mixed case. Words in italic are placeholders
for user-supplied data. Any �le argument that is described as a CSV �le must be in the format described in
Section 2.1.1 above. Files that are called ObjectId �les are text �les that contain one ObjectId

per line, and nothing else . Remember that an ObjectId is just a positive integer.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
2

https://goo.gl/RG6QBX

CSci 235 Software Design and Analysis II

Assignment 5

Prof. Stewart Weiss

Command Description

save_by_id fromfile tofile The given fromfile is an ObjectId �le. For each
ObjectId in the fromfile , this command searches
through the current hotspot list for a record with that
ObjectId. If there is one, it writes it to the tofile ,
which is a hotspot (CSV) �le. If not, no action is taken.
If tofile already exists, it is overwritten, and if not, it is
created. If it cannot be opened for writing, an error
message must be written to the standard error stream. If
fromfile cannot be opened, an error message must be
written to the standard error stream.

save_by_loc lat lon dist

tofile

This �nds all records in the current hotspot list that are
within dist kilometers of the point de�ned by latitude
lat and longitude lon in degrees. For each such record,
it writes its ObjectId to the given tofile, which must
be an ObjectId �le. The formula for the distance in
kilometers between two points on a sphere (our planet) is
given below. If tofile already exists, it is overwritten,
and if not, it is created. If it cannot be opened for
writing, an error message must be written to the
standard error stream.

save_by_boro borocode tofile This �nds all records in the current hotspot list that are
in the given borough, where a two-character borocode is
used as the argument (as de�ned in the table above). For
each such record, it writes its ObjectId to the given
tofile, which must be an ObjectId �le. If tofile
already exists, it is overwritten, and if not, it is created.
If it cannot be opened for writing, an error message must
be written to the standard error stream.

insert fromfile This inserts the contents of the given fromfile , which
must be a valid hotspot (CSV) �le, into the current
hotspot list. The fromfile is not in any particular
order. If fromfile cannot be opened, an error message
must be written to the standard error stream.

delete_by_id fromfile This deletes all records from the current hotspot list
whose ObjectIds are contained in the fromfile , which
is an ObjectId �le. If an ObjectId contained in
fromfile is not the ObjectId of any record in the
hotspot list, no action is taken for it. If fromfile cannot
be opened, an error message must be written to the
standard error stream.

write tofile This writes all records in the current hotspot list, in
order of increasing ObjectId, to tofile as a CSV �le. If
tofile already exists, it is overwritten, and if not, it is
created. If it cannot be opened for writing, an error
message must be written to the standard error stream.

2.1.3 Performance Considerations

You will be graded on performance of your implementation. Think about some of these commands. For
some, should you repeatedly search for each item in a list, over and over, or would a tree traversal be more

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
3

CSci 235 Software Design and Analysis II

Assignment 5

Prof. Stewart Weiss

e�cient? Does it depend on how big the list is? How would your BST implementation make various solutions
easier or harder? There are good and not-so-good solutions to the implementation of these commands.

2.1.4 Examples of Valid Commands

A sequence of commands that would collect the records of hotspots within 0.5 kilometers of the Columbus
Circle entrance of Central Park would be

save_by_loc 40.767985 -73.981285 0.5 cp_hotspot_ids

save_by_id cp_hotspot_ids cp_hotspots

A command that would then delete these records from the hotspot �le would be

delete_by_id cp_hotspot_ids

and write the changed �le to a new hotspot �le:

write hotspots_no_cp

2.1.5 Parsing the Command File

I have written a Command class that contains methods to open and parse the command �le. The class
interface �le and the object �le will be posted in the appropriate directory on the server. The class interface
is included at the end of this assignment speci�cation as an appendix.

2.2 Distance Between Two Points on Sphere

The Haversine formula (see https: //en.wikipedia.org/wiki/Haversine_formula) can be used to compute
the approximate distance between two points when they are each de�ned by their latitude and longitude
in degrees. The distance is approximate because (1) the earth is not really a sphere, and (2) numerical
round-o� errors occur. Nonetheless, for points that are no more than ten kilometers apart, the formula is
accurate enough. Given the following notation

d : the distance between the two points (along a great circle of the sphere,

r : the radius of the sphere,

ϕ1, ϕ2: latitude of point 1 and latitude of point 2, in radians

λ1, λ2: longitude of point 1 and longitude of point 2, in radians

the formula is

2r · arcsin

(√
sin2

(
ϕ2 − ϕ1

2

)
+ cos (ϕ1) cos (ϕ2) sin2

(
λ2 − λ1

2

))

A C++ function to compute this formula in a numerically e�cient way is given in Listing 1.

Listing 1: Haversine Function (corrected version)

#inc lude <cmath>
Link to math l i b r a r y us ing −lm

const double R = 6372.8 // rad iu s o f earth in km
const double TO_RAD= M_PI / 180 . 0 ; // conver s i on o f degree s to rads

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
4

http://https: //en.wikipedia.org/wiki/Haversine_formula

CSci 235 Software Design and Analysis II

Assignment 5

Prof. Stewart Weiss

double have r s ine (double lat1 , double lon1 , double lat2 , double lon2)
{

l a t 1 = TO_RAD ∗ l a t 1 ;
l a t 2 = TO_RAD ∗ l a t 2 ;
lon1 = TO_RAD ∗ lon1 ;
lon2 = TO_RAD ∗ lon2 ;
double dLat = (l a t 2 − l a t 1) / 2 ;
double dLon = (lon2 − lon1) / 2 ;
double a = s i n (dLat) ;
double b = s i n (dLon) ;

r e turn 2 ∗ R ∗ as in (sq r t (a∗a + cos (l a t 1)∗ cos (l a t 2)∗b∗b)) ;
}

3 The Hotspot Class

A hotspot record must be represented as an instance of a Hotspot class. This class must encapsulate all
of the �elds described in Section 2.1.1 above, and must have a public interface with at least the methods
contained in Listing 2 below. These methods are not described in as much detail as you must provide in
your interface �le.

Listing 2: Minimal Hotspot Class Public Interface

c l a s s Hotspot
{
pub l i c :

// Defau l t con s t ruc to r ; f i l l s f i e l d s with z e ro s or nu l l s t r i n g s
Hotspot () ;

// Constructor that c r e a t e s Hotspot ob j e c t from a hotspot f i l e t ex t l i n e
Hotspot (const s t r i n g) ;

// Copy cons t ruc to r
Hotspot (const Hotspot &);

// Constructor to c r e a t e a Hotspot ob j e c t from nine separa te data va lue s
Hotspot (int , s t r i ng , s t r i ng , s t r i ng , s t r i ng ,

s t r i ng , double , double , s t r i n g) ;

// Sets a l l n ine data members
void s e t (int , s t r i ng , s t r i ng , s t r i ng , s t r i ng ,

s t r i ng , double , double , s t r i n g) ;

// Gets a l l n ine data members
void get (i n t &, s t r i n g &, s t r i n g &, s t r i n g &,

s t r i n g &, s t r i n g &, double&, double&, s t r i n g &);

/∗∗ pr in t () − p r i n t s the hotspot data onto the g iven ostream
∗ @param ostream s [inout] ostream opened f o r wr i t i ng
∗ @pre the ob j e c t has va l i d data
∗ @post i f the ob j e c t has va l i d data , then i t i s wr i t t en to ostream
∗ in CSV format and the ostream i s updated
∗/
void p r in t (ostream & s) ;

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
5

CSci 235 Software Design and Analysis II

Assignment 5

Prof. Stewart Weiss

/∗∗ Two f r i e nd comparison ope ra to r s :
∗ bool operator< (l t , r t) i s t rue i f and only i f :
∗ l t . ObjectId < r t . ObjectId
∗ bool operator== (l t , r t) i s t rue i f and only i f :
∗ l t . ObjectId == rt . ObjectId
∗/
f r i e nd bool operator< (const Hotspot & l t , const Hotspot & r t) ;
f r i e nd bool operator== (const Hotspot & l t , const Hotspot & r t) ;

} ;

If you are wondering what else might belong in this interface, consider methods to compute the distance
between two Hotspots, or between a Hotspot and another point given as a (latitude,longitude) in decimal
degrees, or that return just the ObjectId of a Hotspot. You might choose to implement your own assignment
operator (operator=) as well. These are design considerations. Lastly, the private data that this class
must encapsulate should be fairly obvious.

4 The HotspotList Class

The program must include a HotspotList class, which encapsulates the data and methods of an easily
searchable list of Hotspot objects. The underlying implementation must be a binary search tree whose nodes

contain Hotspot objects, ordered by ObjectId . You are relatively free to design your own interface, but
you are constrained in that it must support at the very least the following methods. They are described
informally below. It is up to you to re�ne them and create a suitable interface. But you must create a binary
search tree to implement these methods. Asymptotic worse case running times are provided, with n being
the number of nodes in the list and h the height of the tree. Your algorithms must run within these running
times.

Operation and Arguments Description Worst Case

Running

Time

int write(ostream &) Given an ostream that has been opened for
writing, the hotspot list is written to the ostream
in order of increasing ObjectId. This operation
should return the number of records written.

O(n)

int insert(const Hotspot &

)

A single record is added to the hotspot list,
preserving the search tree order, provided that its
ObjectId is not the same as that of an existing
record. This should return 1 if successful and 0 if
not.

O(h)

int insert(const

HotspotList & hlist)

If hlist is in sorted order of ObjectIds, then
this inserts every Hotspot record from the list
into the existing Hotspot list, provided that none
are exact duplicates. Those that are duplicates
are not inserted. This should return the number
of records successfully inserted into the list.

O(mh) where m
is the size of the
hlist.

int remove(ObjectId) This removes the Hotspot object from the
hotspot list whose ObjectId matches the given
ObjectId. If none match, it has no e�ect. This
returns the number of records deleted, i.e., 1 or 0.

O(h)

int size() This returns the number of objects in the list. O(1)

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
6

CSci 235 Software Design and Analysis II

Assignment 5

Prof. Stewart Weiss

Operation and Arguments Description Worst Case

Running

Time

int find(ObjectId, Hotspot

&)

Searches the hotspot list for the record whose
ObjectId matches the given ObjectId. If it �nds
one, it is copied into the supplied parameter. If
not, the parameter is unchanged. It returns 1 if
it found the record and 0 if it did not.

O(h)

int make_empty() This deletes all of the records in the list and
returns the number of records deleted.

O(n)

5 The Binary Search Tree Template Class

The binary search tree must be implemented as a template class. It must contain at the very least, methods
to:

• print the tree contents in sorted order onto a given output stream

• insert a single object

• delete a single object

• �nd a given object and return a copy of it

• �nd the smallest object in the tree return a copy of it

• make the entire tree empty

For example, the following is a possible abstract interface:

template <typename T>

class BST

{

public:

BST (); // default

BST (const BST & tree); // copy constructor

~BST (); // destructor

// Search methods:

virtual T find (const T& x) const = 0;

virtual T findMin () const = 0;

// Displaying the tree contents:

virtual void print (ostream& out) const = 0;

// Tree modifiers:

virtual void clear() = 0; // empty the tree

virtual void insert(const T& x) = 0; // insert element x

virtual void remove(const T& x) = 0; // remove element x

};

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
7

CSci 235 Software Design and Analysis II

Assignment 5

Prof. Stewart Weiss

6 Project Organization

Your project must contain, at the very least, the following �les, named exactly as follows, case-sensitively:

hotspot.h The Hotspot class interface, with at least the public methods speci�ed in Listing 2 above.

hotspot.cpp The implementation of the Hotspot class.

hotspotlist.h The HotspotList class interface, with at least the set of public methods speci�ed in Section
4. You are free to add more, but use your judgment in deciding whether to add public or private
methods.

hotspotlist.cpp The implementation of the HotspotList class.

bst.h The binary search tree template class interface

bst.cpp The binary search tree template class implementation �le

command.h The Command class interface �le that I provide for you.

command.o The object �le for the Command class implementation �le.

main.cpp This �le should contain the main program and all functions that it uses other than the member
functions of the above classes.

You must create a separate template class for a binary search tree, and then implement the HotspotList

class by embedding an instance of that class as a private member. The template class must work for nodes
with data of any underlying type that has comparison methods.

7 Grading Rubric

The program will be graded on a 100 point scale based on the following rubric.

• A program that fails to build, i.e., to compile and link on a cslab host loses 80%. The remaining 20%
will be assessed using the rest of the rubric below.

• Meeting the functional requirements of the assignment: 50%

• Meeting the performance requirements of the assignment: 10%

• Design (modularity and organization) 15%

• Documentation: 20%

• Style and proper naming: 5%

This implies that a program that cannot be built on a lab computer cannot receive more than 20 points.
The performance component of 10% applies to the performance of all aspects of the program, but with
emphasis on the binary tree methods. As a reminder, you must include proper documentation, including
build instructions. If I cannot build it because there are no instructions, it will lose 80 points.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
8

CSci 235 Software Design and Analysis II

Assignment 5

Prof. Stewart Weiss

8 Submitting the Assignment

This assignment is due by the end of the day (i.e. 11:59PM, EST) on December 7, 2017. There is a directory
in the CSci Department network whose full path name is

/data/biocs/b/student.accounts/cs235_sw/projects/project4.

That is where your submission will go. In order to put it there you must follow these steps. First you
will create a zip �le containing your source code, including the header �le command.h and the object �le
command.o. To do this, create a directory named proj4_username where username is replaced by your
login name, and put all of your �les into that directory. Do not place anything else into this directory. You
will lose 1 point for each �le that does not belong there . With all �les in your directory, change
directory so that proj4_username is within the current directory and run the command

zip -r proj2_username.zip ./proj4_username

This will compress the directory and all of the �les within that directory into the �le named proj4_username .zip.
You must use the -r option so that when this is unzipped, all �les will be contained in a directory named
proj4_username . You will lose 2 points if the unzip command does not create this directory. Then you
will use the program submit235project to deposit the zip �le into the submission directory. The program
requires two arguments: the number of the assignment and the pathname of your zip �le. For example, if
your username on our system is Bugs.Bunny and your zip �le is named proj4_Bugs.Bunny.zip and it is in
your current working directory (e.g., your home directory) then you would type

/data/biocs/b/student.accounts/cs235_sw/bin/submit235project 4 proj4_Bugs.Bunny.zip

The program will create the �le

/data/biocs/b/student.accounts/cs235_sw/projects/project4/proj4_Bugs.Bunny.zip.

You will not be able to read this �le, nor will anyone else except for me. But you can verify that the command
succeeded by typing the command

ls -l /data/biocs/b/student.accounts/cs235_sw/projects/project4

and making sure you see your �le and that its size is the same as the size of the original proj4_Bugs.Bunny.zip.

If you decide to make any changes and resubmit, just run the command again and it will replace the old �le
with the new one. Do not try to put your �le into this directory in any other way - you will be unable to do
this.

If you put a solution there and then decide to change it before the deadline, just replace it by the new
version. Once the deadline has passed, you cannot do this. I will grade whatever version is there at the end
of the day on the due date. You cannot resubmit the program after the due date.

9 Command Class Interface

#i f n d e f __COMMAND_H__
#de f i n e __COMMAND_H__

#inc lude <iostream>
us ing namespace std ;

/∗∗∗
Exported Types

∗∗∗/

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
9

CSci 235 Software Design and Analysis II

Assignment 5

Prof. Stewart Weiss

/∗∗ Command_type :
An enumerated type to r ep r e s en t the d i f f e r e n t types o f commands . This i s
more e f f i c i e n t than s t o r i n g command types as s t r i n g s . Not ice that the l a s t
va lue o f the type i s num_Command_types , which i s s imply a count o f how many
va lue s the type conta in s . I t i s a u s e f u l method o f counting , because as long
as you i n s e r t new va lue s be f o r e i t , i t remains va l i d .

∗/
typede f enum
{

write_cmmd = 0 ,
save_by_id_cmmd ,
save_by_loc_cmmd ,
save_by_boro_cmmd ,
insert_cmmd ,
delete_by_id_cmmd ,
bad_cmmd,
null_cmmd ,
num_Command_types

} Command_type ;

typede f enum
{

MN = 0 ,
BX,
BK,
QU,
SI ,
BAD_BORO,
num_Boros

} Boro_type ;

/∗∗∗
Command Class I n t e r f a c e

∗∗∗/

c l a s s Command
{
pub l i c :

/∗∗ Command() A de f au l t con s t ruc to r f o r the c l a s s
∗/

Command () ;

/∗∗ get_next (i s t ream & in) r e s e t s the va lue s o f the command ob j e c t on
∗ which i t i s c a l l e d to the va lue s found at the cur rent read po in t e r o f
∗ the i s t ream in , provided in . e o f () i s f a l s e .
∗ @param ist ream in [inout] an i s t ream al ready opened f o r read ing
∗ @pre i s t ream in i s open f o r read ing and in . e o f () i s f a l s e
∗ @post I f in . e o f () i s f a l s e on entry to t h i s cons t ructor , then
∗ the command i s re− i n i t i a l i z e d to the va lue s found in the input
∗ stream in , and the i s t ream po in t e r i s advanced to the next l i n e .
∗ I f the command i s i nva l i d , then when typeo f () i s c a l l e d on i t ,
∗ i t w i l l r e turn bad_command .
∗ I f in . e o f () i s t rue on entry , then the Command_type i s s e t

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
10

CSci 235 Software Design and Analysis II

Assignment 5

Prof. Stewart Weiss

∗ to nu l l and the remaining va lue s are undef ined .
∗ @return true i f the command was i n i t i a l i z e d to something other than a
∗ bad_command , and f a l s e o therwi se .
∗/
bool get_next (i s t ream & in) ;

/∗∗ typeo f () r e tu rn s the type o f the Command on which i t i s c a l l e d .
∗ @pre None
∗ @post None , as t h i s i s a const method
∗ @return A value o f Command_type , depending on the type o f the command

ob j e c t .
∗/

Command_type type_of () const ;

/∗∗ args () s e t s the va lue s o f i t s parameters to the argument va lue s o f
∗ the Command ob j e c t on which i t i s c a l l e d . I f the Command ob j e c t i s a
∗ bad_command or nu l l command then the r e s u l t i s s e t to f a l s e and the
∗ remaining parameter va lue s are undef ined . Otherwise , the Command_type
∗ should be one o f print_cmmd , save_by_id_cmmd , save_by_loc_cmmd ,
∗ insert_cmmd , or delete_by_id_cmmd , and the appropr ia te va lue s are
∗ copied from the cur rent va lue s in the Command object , meaning :
∗ i f wr ite , then the t o f i l e ,
∗ i f i n s e r t , then the f r om f i l e
∗ i f delete_by_id , then the f r om f i l e
∗ i f save_by_id , then the t o f i l e and f r om f i l e ,
∗ i f save_by_boro , then the borocode and the t o f i l e
∗ i f save_by_loc , then the l a t i t ude , long i tude , d i s tance , and t o f i l e
∗ @pre Command_type i s i n i t i a l i z e d to a va l i d va lue
∗ @post Ei ther r e s u l t == f a l s e or a l l members are
∗ s e t to the va lue s in the ob j e c t .
∗/
void get_args (

s t r i n g & f r om f i l e ,
s t r i n g & t o f i l e ,
double & l a t i t ude ,
double & long i tude ,
double & dis tance ,
Boro_type & borocode ,
bool & r e s u l t
) const ;

p r i va t e :
Command_type type ; // The type o f the Command ob j e c t
s t r i n g f r om f i l e ;
s t r i n g t o f i l e ;
double l a t i t u d e ;
double l ong i tude ;
Boro_type borocode ;
double d i s t ance ;

} ;

#end i f /∗ __COMMAND_H__ ∗/

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
11

	1 Summary
	2 Program Inputs
	2.1 Input File Details
	2.1.1 Hotspot Files
	2.1.2 Commands File
	2.1.3 Performance Considerations
	2.1.4 Examples of Valid Commands
	2.1.5 Parsing the Command File

	2.2 Distance Between Two Points on Sphere

	3 The Hotspot Class
	4 The HotspotList Class
	5 The Binary Search Tree Template Class
	6 Project Organization
	7 Grading Rubric
	8 Submitting the Assignment
	9 Command Class Interface

