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Notes on Kleene's Theorem

Kleene's Theorem states the equivalence of the following three statements:

1. A language is regular (i.e., is represented by a regular expression).

2. A language is accepted by a NDFA.

3. A language is accepted by a FA.

In the textbook by Cohen, he states the theorem using TG's in place of NDFAs. It makes no 
difference. We could add a fourth statement to the list, but Kleene did not. In trying to stay close 
to the text, I will restate Kleene's Theorem using TGs, and also as a set of implications.

Restatement of Kleene's Theorem:

1. If a language is regular , there is a TG that accepts it.

2. If a language is accepted by a TG, then there is a FA that accepts it.

3. If a language is accepted by a FA, then it is regular (i.e., there is a regular expression that 
defines it.

In these notes, I prove statements 2 and 3 above. The proof of statement 1 is very easy and will 
be added at a later date.

Proof of 2. For any TG M,  there is a FA M' such that L(M') =  L(M).

This is a constructive proof. Given a TG M,  it defines  a FA M' that accepts the same language 
as the TG.

Let M have states s1, s2, ..., sn and assume that the set of start states of M is S and the set of final 
states is F.

First, create a TG M0 exactly like M except that M0 has a unique start state. M0 is identical to M 
except that it has a new start state, s0, with -transitions to each state of M that is in S, and the 
states that were start states in M are non-start states in M0.  Since any word accepted by M can be 
accepted by M0  by using  a  -transition to enter the same start  state  that  would lead to its 
acceptance in M,  and since any word that is accepted by  must be accepted by M since it must 
first reach a state that is a start state in M, without M0 reading any letters, L(M0) = L(M).

Next, let M1 be exactly the same as M0 except that it contains no edges labeled by strings of 
length greater than 1. To do this, first let M1 be a copy of M0.  Then, for each edge in M1 that is 
labeled by a string of length > 1, do the following. Suppose the edge from si to sj in M1 is labeled 
by w = a1a2a3...ak, where k > 1.  Create k-1 new states in M1 with unique labels, say  t1, t2, ..., tk-1, 
create the transitions (si,a1) = t1,  (t1,a2) = t2,  (t2,a3) = t3, ...,  (tk-2,ak-1) = tk-1, and (tk-1,ak) = sj, 
and delete the edge from si to sj. Then M1 accepts the same language as M0 because M0 can move 
from si to sj on w if and only if M1 can move from si to sj on w by entering the new intermediate 
states.  

1



C SCI  265 Computer Theory I Prof. Stewart Weiss
Notes on Kleene's Theorem

M1 is now a NDFA with -transitions, called a NDFA-.  The next step is to build the FA M' 
that accepts the same language as M1. For any state s, define  

−closure  s  = {t ∣   s , =t ∨ ∃u  u∈−closure  s ∧   u , =t }

Notice that this is a recursive definition of the -closure. The recursion is embedded within the 
curly braces, but it is nonetheless recursion. In plain words, the -closure of a state s is the set of 
states that a NDFA- can enter from s without reading any symbols. Now define the -closure 
of a set of states S:

−closure S  = 
s∈S

−closure  s 

We can now construct the FA M'. The idea is that the states of M' will be sets of states from M1. 
The following pseudo-code algorithm constructs the FA M'.

Let s0 be the unique start state of M1.
Let S0 = -closure(s0) be the start state of M'.
Let Q denote the collection of states of M'. Add S0 to Q and mark it unprocessed.
while there is a state-set S in Q that is unprocessed do

mark S processed;
for each input symbol a do

Let T be the set of all states to which there is a transition on 'a' from some state in S;
Let T = -closure(T);
if T is not in Q then

add Tto Q and mark it unprocessed;
add a transition from S to Tlabeled 'a';

For each state-set S in Q, if S contains a final state of M, make S a final state of M'.

Claim: L(M') = L(M1).

Proof.

Let (s,a) denote the transition function of M1. Since  is a NDFA, (s,a) is the set of states that 
can be entered by M1 on reading 'a' in state s. The emphasis is on "set" because the transition 
function is not the same as that of a FA -- it defines a set. The set (s,a) includes any states that  
it can reach by following the -transitions in M1.   By definition, *(s,w) is the set of states that 
can be reached by M1 on reading the string w in state s, again including the possibility that it 
might have used -transitions.

Let  M'(S,a)  denote the  transition  function  of  M'.   From the  algorithm above,  the  transition 
function  M'(S,a) is defined by

M '  S ,a  = 
s∈S

 s ,a  (1)
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because the definition includes the states entered by all  transitions. That is why the -closure 
is  computed at each step.

Claim: For any string w, 

M '
*  S ,w  = 

s∈S

*  s , w  (2)

This can be proved by induction on the length of w. It is true for |w| = 0 since 

M '
*  S ,  = S = 

s∈S

*  s ,  (3)

because the states in M' are their own -closures, so it follows from the definition of -closure. 
Assume it is true for any w with  |w| = m and let w  be a word of length m+1. Then w = va, 
where |v| = m. Hence

M '
*  S ,w  = M '

* S ,va 

= M ' M '
*  S ,v  , a 

= M ' s∈S

*  s ,v  , a
= 

s∈S

 *  s , v  ,a 

= 
s∈S

* s ,va 

= 
s∈S

* s ,w 

The second step used the definition of  M'
* and the third step applied the inductive hypothesis on 

v.  The fourth step used the definition from (1) (and an implicit step I have not included, but 
which can be proved easily enough.) The last two steps follow from the definition of w and *. It 
follows that the claim is proved.  

Since S0 = -closure(s0) is the start state of M',  

M '
* S0, w  = * s0 , w 

Also, since w is in L(M') if and only if M'
* (S0,w) is a final state, from the above, w is in L(M') if 

and only if *(s0,w) contains a final state in M1, which is true if and only if w is in L( M1).

Proof of 3.  If a language L is accepted by some FA, then there is a regular expression r such 
that  L = <r>.

Let L be accepted by an FA M with states s1, s2, ..., sn. Assume that s1 is the start state of M and 
that the set of final states of M is denoted F.  Define the set L(i,j,k) to be the set of all words that  
cause M, starting in state sj to enter state sj without passing through any of the states sk+1, sk+2, ..., 
sn.  In other words, L(i,j,k) is the set of words that start in si and end in sj and pass through only 
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the states s1, s2, ..., sk.  "Passing through" means entering and leaving, like one does in a toll 
booth or turnstile. It does not mean "landing there" and staying there.

The language accepted by M is the set of all words that cause M, when starting in state s1 to stop 
in a final state, passing through any of the states of M. This means that, if sf is a final state, then 
L(1,f,n) consists only of words accepted by M, and that 

L = L(1,f1, n)   L(1,f2, n)   ...   L(1,fm, n)  (4)

where F = {sf1, sf2, ..., sfm }. 

From the definition of L(i,j,k) it follows that, for each i and j, 1 <= i, j <= n,  L(i,j,0 ) is the set of 
all symbols that label the transitions from si to sj, and that in addition, if i = j, then the null string 
is also in this set.  Formally,

L i , j ,0 ={{a ∣   i ,a = j } ∪ if i= j

{a ∣   i ,a = j } if i≠ j
(5)

Furthermore,  for  all  k   >  0,  the  set  L(i,j,k)  can  be  defined  recursively  from the  following 
observation.  (I  will  use the language abusively and talk  about a word starting in a state  or 
passing through a state or even visiting a state. What this means of course is that the word causes 
M to enter a state while reading it, or causes M to pass through a state while reading it, and so 
on.)

1. If a word starts in state si and terminates in state sj without going through any states sk+1, 
sk+2, ..., sn , then it falls into one of two cases:

2. It starts in state si and terminates in state sj without going through any states sk, sk+1, ..., sn , 
or 

It starts in state si and terminates in state sj and enters state sk, and then visits other states without 
passing through any of sk+1, sk+2, ..., sn , possibly passing through sk many times, and then returns 
to sk for the last time, and then travels a path to state sj.

In short, either the word was already in L(i,j,k-1) (Case 1) or it is in L(i,j,k) but not in L(i,j,k-1), 
and is there because it passes through state sk, and we can break the word into 3 pieces: the 
"left"piece x that first reaches sk without going  through any states sk, sk+1, ..., sn, the "middle" 
piece y that travels around M without going through any states sk, sk+1, ..., sn until it visits sk  for 
the last time, and the "right" piece z that reaches sj from sk without going through any states sk, sk

+1, ..., sn.  Since x in in L(i,k,k-1), y is in L(k,k,k-1)* and y is in L(k,j,k-1), it follows that

L i , j ,k  = L i , j ,k−1  ∪ L  i , k ,k−1 ⋅L  k ,k ,k−1 *⋅L  k , j ,k−1  (6)

Claim: For every i and j, 1 <= i,j <= n, and for every k, 0 <= k <= n, the  set L(i,j,k) can be 
represented by a regular expression.

Proof.
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We can prove this by induction on k. 

For each i and j, the set L(i,j,0) is a finite set and is therefore regular. Let r(i,j, 0) denote the 
regular expression such that L(i,j,0) = < r(i,j, 0) >.

Assume that the claim is true for k-1. Then, for any i and j,  there exists a regular expression that 
we can denote  r(i,j,k-1) such that L(i,j,k-1) = <r(i,j,k-1)>.  From formula (6) and the induction 
hypothesis it follows that

L i , j ,k  = 〈r  i , j ,k−1  〉  〈r i , k ,k−1  〉⋅〈r k ,k ,k−1 
*
〉⋅〈r  k , j ,k−1  〉

= 〈r  i , j ,k−1   r i ,k ,k−1 ⋅r k ,k ,k−1 
*
⋅r  k , j ,k−1  〉

(7)

where each of  r(i,j,k-1), r(i,k,k-1), r(k,k,k-1), and r(k, j, k-1) is a regular expression. Since the 
right hand side is a regular expression, it follows that L(i,j,k) is a regular language , and that we 
can let r(i,j,k) denote the regular expression that defines it. By the axiom of induction, it is true 
for all k >= 0. Of course, for k > n, the sets do not change since there are no states in the FA 
numbered higher than sn, so although in principle all of these sets exist, we are only concerned 
about the ones for which k <= n. QED.

The truth of the theorem follows from formulas (4) and (7). Formula (4) states that L is a finite 
union of the sets L(1,s,n) for which s is a final state of M, and formula (7) states that each of the 
sets L(1,s,n) can be represented  by regular expressions, so that 

L = <r(1,f1, n)   r(1,f2, n)  + ...  + r(1,fm, n) > (8)

proving that L is a regular expression. QED.

The proof of the theorem implicitly defines a tabular algorithm that can be used to construct the 
regular  expression.  It  also  suggests  a  recursive  function  that  can  be  used  to  construct  the 
expression. The most efficient solution, however, would be a dynamic programming solution, 
combining the simple and inefficient table-driven approach with the recursive solution. I will not 
describe that algorithm here. For now, I present a recursive algorithm , written in C with pseudo-
code.

Let M have states 1, 2, 3, ..., n. Assume the alphabet is  . Assume that  (i,a) is the transition 
function, which can also be represented by a 2D matrix [i,a].

The main function is  BuildRE(), which takes the FA, and integers i, j, and k,  and constructs a 
string re that contains the regular expression, fully parenthesized to avoid possible ambiguities. 
The  FA is  used  inside  the  function  in  pseudo-code  that  looks  up  all  symbols  that  cause  a 
transition from state i to state j. I leave out necessary declarations and such.
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void BuildRE ( FA M, int i, int j, int k, char re[] )
{
    char re1[MAXSIZE];
    char re2[MAXSIZE];    
    char re3[MAXSIZE];
    char re4[MAXSIZE];

    if ( k == 0 ) {
        re = { a in SIGMA | M.delta(i,a) == j };
        if ( i == j )
            re = re + 'LAMBDA';
    }
    else { // k > 0
        BuildRE ( M, i, j, k-1, re1); 
        BuildRE ( M, i, k, k-1, re2); 
        BuildRE ( M, k, k, k-1, re3); 
        BuildRE ( M, k, j, k-1, re4); 
        sprintf (re, "(%s)+(%s)(%s)*(%s)", re1, re2, re3, re4 ); 
    }
}

The main program is simply 

void main ()
{

    sprintf(re, "()");
    for ( i = 1; i <= n; i++ ) 
        if ( finalstate(i) ) {
            BuildRE( M, 1, i, n, temp_re);
            sprintf(re, "(%s)+(%s)", re, temp_re);
        }
    printf("%s\n", re);
}
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Example

We will build the regular expression for the FA below using a table-driven method.

k

i,j 0 1 2 3

1,1   (aa)*

1,2 a a a(aa)* a(aa)* + a*b ( (a+b) a*b )*(a+b)(aa)* 

1,3 b b a*b a*b ( (a+b) a*b )*          

2,1 a a a(aa)*

2,2   aa (aa)*

2,3 b b + ab a*b

3,1   (a + b)(aa)*a

3,2 a + b a + b (a + b)(aa)*

3,3    (a + b)a*b

Note. L(1,3,3)  is simplified from a*b + a*b(  (a+b)a*b)* (  + (a+b)a*b). There is no need to 
calculate any other parts of the table. Since L(M) is the union of L(1,2,3) and L(1,3,3), the final 
expression is

L(M) = a(aa)* + a*b ( (a+b) a*b )* (  + (a+b)(aa)* )
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