Kleene's Theorem states the equivalence of the following three statements:

1. A language is regular (i.e., is represented by a regular expression).
2. A language is accepted by a NDFA.
3. A language is accepted by a FA.

In the textbook by Cohen, he states the theorem using TG's in place of NDFAs. It makes no difference. We could add a fourth statement to the list, but Kleene did not. In trying to stay close to the text, I will restate Kleene's Theorem using TGs, and also as a set of implications.

Restatement of Kleene's Theorem:

1. If a language is regular , there is a TG that accepts it.
2. If a language is accepted by a TG, then there is a FA that accepts it.
3. If a language is accepted by a FA, then it is regular (i.e., there is a regular expression that defines it.

In these notes, I prove statements 2 and 3 above. The proof of statement 1 is very easy and will be added at a later date.

Proof of 2. For any TG M, there is a FA M' such that $L\left(M^{\prime}\right)=L(M)$.
This is a constructive proof. Given a TG M, it defines a FA M' that accepts the same language as the TG.

Let M have states $s_{1}, s_{2}, \ldots, s_{n}$ and assume that the set of start states of M is S and the set of final states is F .

First, create a $T G \mathrm{M}_{0}$ exactly like M except that M_{0} has a unique start state. M_{0} is identical to M except that it has a new start state, s_{0}, with Λ-transitions to each state of M that is in S , and the states that were start states in M are non-start states in M_{0}. Since any word accepted by M can be accepted by M_{0} by using a Λ-transition to enter the same start state that would lead to its acceptance in M , and since any word that is accepted by must be accepted by M since it must first reach a state that is a start state in M, without M_{0} reading any letters, $L\left(M_{0}\right)=L(M)$.

Next, let M_{1} be exactly the same as M_{0} except that it contains no edges labeled by strings of length greater than 1 . To do this, first let M_{1} be a copy of M_{0}. Then, for each edge in M_{1} that is labeled by a string of length > 1, do the following. Suppose the edge from s_{i} to s_{j} in M_{1} is labeled by $w=a_{1} a_{2} a_{3} \ldots a_{k}$, where $k>1$. Create $k-1$ new states in M_{1} with unique labels, say $t_{1}, t_{2}, \ldots, t_{k-1}$, create the transitions $\delta\left(\mathrm{s}_{\mathrm{i}}, \mathrm{a}_{1}\right)=\mathrm{t}_{1}, \delta\left(\mathrm{t}_{1}, \mathrm{a}_{2}\right)=\mathrm{t}_{2}, \delta\left(\mathrm{t}_{2}, \mathrm{a}_{3}\right)=\mathrm{t}_{3}, \ldots, \delta\left(\mathrm{t}_{\mathrm{k}-2}, \mathrm{a}_{\mathrm{k}-1}\right)=\mathrm{t}_{\mathrm{k}-1}$, and $\delta\left(\mathrm{t}_{\mathrm{k}-1}, \mathrm{a}_{\mathrm{k}}\right)=\mathrm{s}_{\mathrm{j}}$, and delete the edge from s_{i} to s_{j}. Then M_{1} accepts the same language as M_{0} because M_{0} can move from s_{i} to s_{j} on w if and only if M_{1} can move from s_{i} to s_{j} on w by entering the new intermediate states.
M_{1} is now a NDFA with Λ-transitions, called a NDFA- Λ. The next step is to build the FA M' that accepts the same language as M_{1}. For any state s , define

$$
\Lambda \text {-closure }(s)=\{t \mid \delta(s, \Lambda)=t \vee(\exists u)(u \in \Lambda-\text { closure }(s) \wedge \delta(u, \Lambda)=t)\}
$$

Notice that this is a recursive definition of the Λ-closure. The recursion is embedded within the curly braces, but it is nonetheless recursion. In plain words, the Λ-closure of a state s is the set of states that a NDFA- Λ can enter from s without reading any symbols. Now define the Λ-closure of a set of states S :

$$
\Lambda-\text { closure }(S)=\bigcup_{s \in S} \Lambda-\text { closure }(s)
$$

We can now construct the FA M'. The idea is that the states of M^{\prime} will be sets of states from M_{1}. The following pseudo-code algorithm constructs the FA M'.
Let s_{0} be the unique start state of M_{1}.
Let $\mathrm{S}_{0}=\Lambda$-closure (s_{0}) be the start state of M^{\prime}.
Let Q denote the collection of states of M^{\prime}. Add S_{0} to Q and mark it unprocessed.
while there is a state-set S in Q that is unprocessed do
mark S processed;
for each input symbol a do
Let T be the set of all states to which there is a transition on 'a' from some state in S ;
Let $T_{\lambda}=\Lambda$-closure(T);
if T_{λ} is not in Q then
add T_{λ} to Q and mark it unprocessed;
add a transition from S to T_{λ} labeled 'a';
For each state-set S in Q, if S contains a final state of M, make S a final state of M^{\prime}.
Claim: $\mathrm{L}\left(\mathrm{M}^{\prime}\right)=\mathrm{L}\left(\mathrm{M}_{1}\right)$.

Proof.

Let $\delta(\mathrm{s}, \mathrm{a})$ denote the transition function of M_{1}. Since is a NDFA, $\delta(\mathrm{s}, \mathrm{a})$ is the set of states that can be entered by M_{1} on reading 'a' in state s . The emphasis is on "set" because the transition function is not the same as that of a FA -- it defines a set. The set $\delta(s, a)$ includes any states that it can reach by following the Λ-transitions in M_{1}. By definition, $\delta^{*}(\mathrm{~s}, \mathrm{w})$ is the set of states that can be reached by M_{1} on reading the string w in state s , again including the possibility that it might have used Λ-transitions.

Let $\delta_{\mathrm{M}}(\mathrm{S}, \mathrm{a})$ denote the transition function of M '. From the algorithm above, the transition function $\delta_{M}(S, a)$ is defined by

$$
\begin{equation*}
\delta_{M^{\prime}}(S, a)=\bigcup_{s \in S} \delta(s, a) \tag{1}
\end{equation*}
$$

because the definition includes the states entered by all Λ transitions. That is why the Λ-closure is computed at each step.
Claim: For any string w,

$$
\begin{equation*}
\delta_{M}^{*} \cdot(S, w)=\bigcup_{s \in S} \delta^{*}(s, w) \tag{2}
\end{equation*}
$$

This can be proved by induction on the length of w . It is true for $|\mathrm{w}|=0$ since

$$
\begin{equation*}
\delta_{M}^{*} \cdot(S, \Lambda)=S=\bigcup_{s \in S} \delta^{*}(s, \Lambda) \tag{3}
\end{equation*}
$$

because the states in M^{\prime} are their own Λ-closures, so it follows from the definition of Λ-closure. Assume it is true for any w with $|\mathrm{w}|=\mathrm{m}$ and let w be a word of length $\mathrm{m}+1$. Then $\mathrm{w}=\mathrm{va}$, where $|v|=m$. Hence

$$
\begin{aligned}
\delta_{M}^{*} \cdot(S, w) & =\delta_{M^{\prime}}^{*}(S, v a) \\
& =\delta_{M^{\prime}}\left(\delta_{M}^{*} \cdot(S, v), a\right) \\
& =\delta_{M} \cdot\left(\bigcup_{s \in S} \delta^{*}(s, v), a\right) \\
& =\bigcup_{s \in S} \delta\left(\delta^{*}(s, v), a\right) \\
& =\bigcup_{s \in S} \delta^{*}(s, v a) \\
& =\bigcup_{s \in S} \delta^{*}(s, w)
\end{aligned}
$$

The second step used the definition of $\delta_{\mathrm{M}}{ }^{*}$ and the third step applied the inductive hypothesis on v. The fourth step used the definition from (1) (and an implicit step I have not included, but which can be proved easily enough.) The last two steps follow from the definition of w and δ^{*}. It follows that the claim is proved.

Since $S_{0}=\Lambda$-closure $\left(\mathrm{s}_{0}\right)$ is the start state of M^{\prime},

$$
\delta_{M}^{*} \cdot\left(S_{0, w} w\right)=\delta^{*}\left(s_{0}, w\right)
$$

Also, since w is in $L\left(M^{\prime}\right)$ if and only if $\delta_{M^{*}}{ }^{*}\left(S_{0}, W\right)$ is a final state, from the above, w is in $L\left(M^{\prime}\right)$ if and only if $\delta^{*}\left(\mathrm{~s}_{0}, \mathrm{w}\right)$ contains a final state in M_{1}, which is true if and only if w is in $\mathrm{L}\left(\mathrm{M}_{1}\right)$.

Proof of 3. If a language L is accepted by some FA, then there is a regular expression r such that $\mathrm{L}=\langle\mathrm{r}\rangle$.

Let L be accepted by an FA M with states $s_{1}, s_{2}, \ldots, s_{n}$. Assume that s_{1} is the start state of M and that the set of final states of M is denoted F. Define the set $\mathrm{L}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ to be the set of all words that cause M , starting in state s_{j} to enter state s_{j} without passing through any of the states $\mathrm{s}_{\mathrm{k}+1}, \mathrm{~s}_{\mathrm{k}+2}, \ldots$, s_{n}. In other words, $\mathrm{L}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ is the set of words that start in s_{i} and end in s_{j} and pass through only
the states $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}$. "Passing through" means entering and leaving, like one does in a toll booth or turnstile. It does not mean "landing there" and staying there.
The language accepted by M is the set of all words that cause M , when starting in state s_{1} to stop in a final state, passing through any of the states of M. This means that, if s_{f} is a final state, then $\mathrm{L}(1, \mathrm{f}, \mathrm{n})$ consists only of words accepted by M , and that

$$
\begin{equation*}
\mathrm{L}=\mathrm{L}\left(1, \mathrm{f}_{1}, \mathrm{n}\right) \cup \mathrm{L}\left(1, \mathrm{f}_{2}, \mathrm{n}\right) \cup \ldots \cup \mathrm{L}\left(1, \mathrm{f}_{\mathrm{m}}, \mathrm{n}\right) \tag{4}
\end{equation*}
$$

where $\mathrm{F}=\left\{\mathrm{s}_{\mathrm{f} 1}, \mathrm{~s}_{\mathrm{f} 2}, \ldots, \mathrm{~s}_{\mathrm{fm}}\right\}$.
From the definition of $L(i, j, k)$ it follows that, for each i and $\mathrm{j}, 1<=\mathrm{i}, \mathrm{j}<=\mathrm{n}, \mathrm{L}(\mathrm{i}, \mathrm{j}, 0)$ is the set of all symbols that label the transitions from s_{i} to s_{j}, and that in addition, if $\mathrm{i}=\mathrm{j}$, then the null string is also in this set. Formally,

$$
L(i, j, 0)=\left\{\begin{array}{lll}
\{a \mid & \left.\delta\left(\sigma_{i}, a\right)=\sigma_{j}\right\} & \cup \Lambda \tag{5}\\
\text { if } i=j \\
\{a \mid & \left.\delta\left(\sigma_{i}, a\right)=\sigma_{j}\right\} & \text { if } i \neq j
\end{array}\right.
$$

Furthermore, for all $\mathrm{k}>0$, the set $\mathrm{L}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ can be defined recursively from the following observation. (I will use the language abusively and talk about a word starting in a state or passing through a state or even visiting a state. What this means of course is that the word causes M to enter a state while reading it, or causes M to pass through a state while reading it, and so on.)

1. If a word starts in state s_{i} and terminates in state s_{j} without going through any states s_{k+1}, $\mathrm{s}_{\mathrm{k}+2}, \ldots, \mathrm{~s}_{\mathrm{n}}$, then it falls into one of two cases:
2. It starts in state s_{i} and terminates in state s_{j} without going through any states $s_{k}, s_{k+1}, \ldots, s_{n}$, or

It starts in state s_{i} and terminates in state s_{j} and enters state s_{k}, and then visits other states without passing through any of $\mathrm{s}_{\mathrm{k}+1}, \mathrm{~s}_{\mathrm{k}+2}, \ldots, \mathrm{~s}_{\mathrm{n}}$, possibly passing through sk many times, and then returns to s_{k} for the last time, and then travels a path to state s_{j}.

In short, either the word was already in $\mathrm{L}(\mathrm{i}, \mathrm{j}, \mathrm{k}-1$) (Case 1) or it is in $\mathrm{L}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ but not in $\mathrm{L}(\mathrm{i}, \mathrm{j}, \mathrm{k}-1)$, and is there because it passes through state s_{k}, and we can break the word into 3 pieces: the "left"piece x that first reaches s_{k} without going through any states $s_{k}, s_{k+1}, \ldots, s_{n}$, the "middle" piece y that travels around M without going through any states $s_{k}, s_{k+1}, \ldots, s_{n}$ until it visits s_{k} for the last time, and the "right" piece z that reaches s_{j} from s_{k} without going through any states s_{k}, s_{k} ${ }_{+1}, \ldots, \mathrm{~s}_{\mathrm{n}}$. Since x in in $\mathrm{L}(\mathrm{i}, \mathrm{k}, \mathrm{k}-1)$, y is in $\mathrm{L}(\mathrm{k}, \mathrm{k}, \mathrm{k}-1)^{*}$ and y is in $\mathrm{L}(\mathrm{k}, \mathrm{j}, \mathrm{k}-1)$, it follows that

$$
\begin{equation*}
L(i, j, k)=L(i, j, k-1) \cup L(i, k, k-1) \cdot L(k, k, k-1)^{*} \cdot L(k, j, k-1) \tag{6}
\end{equation*}
$$

Claim: For every i and $\mathrm{j}, 1<=\mathrm{i}, \mathrm{j}<=\mathrm{n}$, and for every $\mathrm{k}, 0<=\mathrm{k}<=\mathrm{n}$, the set $\mathrm{L}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ can be represented by a regular expression.

Proof.

We can prove this by induction on k .
For each i and j, the set $L(i, j, 0)$ is a finite set and is therefore regular. Let $r(i, j, 0)$ denote the regular expression such that $\mathrm{L}(\mathrm{i}, \mathrm{j}, 0)=\langle\mathrm{r}(\mathrm{i}, \mathrm{j}, 0)\rangle$.

Assume that the claim is true for $\mathrm{k}-1$. Then, for any i and j , there exists a regular expression that we can denote $r(i, j, k-1)$ such that $L(i, j, k-1)=<r(i, j, k-1)>$. From formula (6) and the induction hypothesis it follows that

$$
\begin{align*}
L(i, j, k) & =\langle r(i, j, k-1)\rangle+\langle r(i, k, k-1)\rangle \cdot\left\langle r(k, k, k-1)^{*}\right\rangle \cdot\langle r(k, j, k-1)\rangle \\
& =\left\langle r(i, j, k-1)+r(i, k, k-1) \cdot r(k, k, k-1)^{*} \cdot r(k, j, k-1)\right\rangle \tag{7}
\end{align*}
$$

where each of $r(i, j, k-1), r(i, k, k-1), r(k, k, k-1)$, and $r(k, j, k-1)$ is a regular expression. Since the right hand side is a regular expression, it follows that $\mathrm{L}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ is a regular language, and that we can let $\mathrm{r}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ denote the regular expression that defines it. By the axiom of induction, it is true for all $\mathrm{k}>=0$. Of course, for $\mathrm{k}>\mathrm{n}$, the sets do not change since there are no states in the FA numbered higher than s_{n}, so although in principle all of these sets exist, we are only concerned about the ones for which $\mathrm{k}<=\mathrm{n}$. QED.
The truth of the theorem follows from formulas (4) and (7). Formula (4) states that L is a finite union of the sets $L(1, \mathrm{~s}, \mathrm{n})$ for which s is a final state of M , and formula (7) states that each of the sets $L(1, \mathrm{~s}, \mathrm{n})$ can be represented by regular expressions, so that

$$
\begin{equation*}
\mathrm{L}=\left\langle\mathrm{r}\left(1, \mathrm{f}_{1}, \mathrm{n}\right)+\mathrm{r}\left(1, \mathrm{f}_{2}, \mathrm{n}\right)+\ldots+\mathrm{r}\left(1, \mathrm{f}_{\mathrm{m}}, \mathrm{n}\right)>\right. \tag{8}
\end{equation*}
$$

proving that L is a regular expression. QED.
The proof of the theorem implicitly defines a tabular algorithm that can be used to construct the regular expression. It also suggests a recursive function that can be used to construct the expression. The most efficient solution, however, would be a dynamic programming solution, combining the simple and inefficient table-driven approach with the recursive solution. I will not describe that algorithm here. For now, I present a recursive algorithm, written in C with pseudocode.

Let M have states $1,2,3, \ldots, n$. Assume the alphabet is Σ. Assume that $\delta(i, a)$ is the transition function, which can also be represented by a 2D matrix $\delta[\mathrm{i}, \mathrm{a}]$.

The main function is BuildRE(), which takes the FA, and integers i , j , and k , and constructs a string re that contains the regular expression, fully parenthesized to avoid possible ambiguities. The FA is used inside the function in pseudo-code that looks up all symbols that cause a transition from state i to state j. I leave out necessary declarations and such.

```
void BuildRE ( FA M, int i, int j, int k, char re[] )
{
    char re1[MAXSIZE];
    char re2[MAXSIZE];
    char re3[MAXSIZE];
    char re4[MAXSIZE];
    if ( k == 0 ) {
        re = { a in SIGMA | M.delta(i,a) == j };
        if ( i == j )
            re = re + 'LAMBDA';
    }
    else { // k > 0
        BuildRE ( M, i, j, k-1, re1);
        BuildRE ( M, i, k, k-1, re2);
        BuildRE ( M, k, k, k-1, re3);
        BuildRE ( M, k, j, k-1, re4);
        sprintf (re, "(%s)+(%s)(%s)*(%s)", re1, re2, re3, re4 );
    }
}
```

The main program is simply

```
void main ()
{
    sprintf(re, "()");
    for ( i = 1; i <= n; i++ )
        if ( finalstate(i) ) {
            BuildRE( M, 1, i, n, temp_re);
            sprintf(re, "(%s)+(%s)", re, temp_re);
        }
    printf("%s\n", re);
}
```


Example

We will build the regular expression for the FA below using a table-driven method.

i, j	0	1	2	3
1,1	Λ	Λ	$(a a)^{*}$	
1,2	a	a	$a(a a)^{*}$	$a(a a)^{*}+a^{*} b\left((a+b) a^{*} b\right)^{*}(a+b)(a a)^{*}$
1,3	b	b	$a * b$	$a^{*} b\left((a+b) a^{*} b\right)^{*}$
2,1	a	a	$a(a a)^{*}$	
2,2	Λ	$\Lambda+a a$	$(a a)^{*}$	
2,3	b	$b+a b$	$a * b$	$(a+b)(a a)^{* a}$
3,1	\varnothing	\varnothing	$(a+b)(a a)^{*}$	
3,2	$a+b$	$a+b$	$\Lambda+(a+b) a^{*} b$	
3,3	Λ	Λ		

Note. $L(1,3,3)$ is simplified from $a * b+a * b(\Lambda+(a+b) a * b)^{*}\left(\Lambda+(a+b) a^{*} b\right)$. There is no need to calculate any other parts of the table. Since $L(M)$ is the union of $L(1,2,3)$ and $L(1,3,3)$, the final expression is

$$
\mathrm{L}(\mathrm{M})=\mathrm{a}(\mathrm{aa})^{*}+\mathrm{a}^{*} \mathrm{~b}\left((\mathrm{a}+\mathrm{b}) \mathrm{a}^{*} \mathrm{~b}\right)^{*}\left(\Lambda+(\mathrm{a}+\mathrm{b})(\mathrm{aa})^{*}\right)
$$

