Kleene's Theorem states the equivalence of the following three statements:

1. A language is regular (i.e., is represented by a regular expression).
2. A language is accepted by a NDFA.
3. A language is accepted by a FA.

In the textbook by Cohen, he states the theorem using TG’s in place of NDFAs. It makes no difference. We could add a fourth statement to the list, but Kleene did not. In trying to stay close to the text, I will restate Kleene's Theorem using TGs, and also as a set of implications.

Restatement of Kleene's Theorem:

1. If a language is regular, there is a TG that accepts it.
2. If a language is accepted by a TG, then there is a FA that accepts it.
3. If a language is accepted by a FA, then it is regular (i.e., there is a regular expression that defines it).

In these notes, I prove statements 2 and 3 above. The proof of statement 1 is very easy and will be added at a later date.

Proof of 2. For any TG M, there is a FA M' such that L(M') = L(M).

This is a constructive proof. Given a TG M, it defines a FA M' that accepts the same language as the TG.

Let M have states s₁, s₂, ..., sₙ and assume that the set of start states of M is S and the set of final states is F.

First, create a TG M₀ exactly like M except that M₀ has a unique start state. M₀ is identical to M except that it has a new start state, s₀, with Λ-transitions to each state of M that is in S, and the states that were start states in M are non-start states in M₀. Since any word accepted by M can be accepted by M₀ by using a Λ-transition to enter the same start state that would lead to its acceptance in M, and since any word that is accepted by M must be accepted by M since it must first reach a state that is a start state in M, without M₀ reading any letters, L(M₀) = L(M).

Next, let M₁ be exactly the same as M₀ except that it contains no edges labeled by strings of length greater than 1. To do this, first let M₁ be a copy of M₀. Then, for each edge in M₁ that is labeled by a string of length > 1, do the following. Suppose the edge from sᵢ to sⱼ in M₁ is labeled by w = a₁a₂a₃...aₖ, where k > 1. Create k-1 new states in M₁ with unique labels, say t₁, t₂, ..., tₖ₋₁, create the transitions δ(sᵢ,a₁) = t₁, δ(t₁,a₂) = t₂, δ(t₂,a₃) = t₃, ..., δ(tₖ₋₂,aₖ₋₁) = tₖ₋₁, and δ(tₖ₋₁,aₖ) = sⱼ, and delete the edge from sᵢ to sⱼ. Then M₁ accepts the same language as M₀ because M₀ can move from sᵢ to sⱼ on w if and only if M₁ can move from sᵢ to sⱼ on w by entering the new intermediate states.
M₁ is now a NDFA with \(\Lambda \)-transitions, called a NDFA-\(\Lambda \). The next step is to build the FA M' that accepts the same language as M₁. For any state s, define

\[
\Lambda - \text{closure} \{ s \} = \{ t \mid \delta(s, \Lambda) = t \lor \exists u \exists t \in \Lambda - \text{closure} \{ s \} \land \delta(u, \Lambda) = t \}\]

Notice that this is a recursive definition of the \(\Lambda \)-closure. The recursion is embedded within the curly braces, but it is nonetheless recursion. In plain words, the \(\Lambda \)-closure of a state s is the set of states that a NDFA-\(\Lambda \) can enter from s without reading any symbols. Now define the \(\Lambda \)-closure of a set of states S:

\[
\Lambda - \text{closure} \{ S \} = \bigcup_{s \in S} \Lambda - \text{closure} \{ s \}
\]

We can now construct the FA M'. The idea is that the states of M' will be sets of states from M₁. The following pseudo-code algorithm constructs the FA M'.

Let \(s_0 \) be the unique start state of M₁.
Let \(S_0 = \Lambda \)-closure(\(s_0 \)) be the start state of M'.
Let Q denote the collection of states of M'. Add \(S_0 \) to Q and mark it unprocessed.

while there is a state-set S in Q that is unprocessed do
 mark S processed;
 for each input symbol a do
 Let T be the set of all states to which there is a transition on 'a' from some state in S;
 Let \(T_\Lambda = \Lambda \)-closure(T);
 if \(T_\Lambda \) is not in Q then
 add \(T_\Lambda \) to Q and mark it unprocessed;
 add a transition from S to \(T_\Lambda \) labeled 'a';
 For each state-set S in Q, if S contains a final state of M, make S a final state of M'.

Claim: \(L(M') = L(M₁) \).

Proof.

Let \(\delta(s,a) \) denote the transition function of M₁. Since \(M₁ \) is a NDFA, \(\delta(s,a) \) is the set of states that can be entered by \(M₁ \) on reading 'a' in state s. The emphasis is on "set" because the transition function is not the same as that of a FA -- it defines a set. The set \(\delta(s,a) \) includes any states that it can reach by following the \(\Lambda \)-transitions in \(M₁ \). By definition, \(\delta^*(s,w) \) is the set of states that can be reached by \(M₁ \) on reading the string w in state s, again including the possibility that it might have used \(\Lambda \)-transitions.

Let \(\delta_M(S,a) \) denote the transition function of M'. From the algorithm above, the transition function \(\delta_M(S,a) \) is defined by

\[
\delta_M(S,a) = \bigcup_{s \in S} \delta(s,a)
\] (1)
because the definition includes the states entered by all \(\Lambda \) transitions. That is why the \(\Lambda \)-closure is computed at each step.

Claim: For any string \(w \),

\[
\delta^*_M(S, w) = \bigcup_{s \in S} \delta^*_s(s, w) \quad \text{(2)}
\]

This can be proved by induction on the length of \(w \). It is true for \(|w| = 0 \) since

\[
\delta^*_M(S, \Lambda) = S = \bigcup_{s \in S} \delta^*_s(s, \Lambda) \quad \text{(3)}
\]

because the states in \(M' \) are their own \(\Lambda \)-closures, so it follows from the definition of \(\Lambda \)-closure. Assume it is true for any \(w \) with \(|w| = m \) and let \(w \) be a word of length \(m+1 \). Then \(w = va \), where \(|v| = m \). Hence

\[
\delta^*_M(S, w) = \delta^*_M(S, va) = \delta^*_M(S, v, a) = \bigcup_{s \in S} \delta^*_m(s, v, a) = \bigcup_{s \in S} \delta^*_s(s, w)
\]

The second step used the definition of \(\delta^*_M \) and the third step applied the inductive hypothesis on \(v \). The fourth step used the definition from (1) (and an implicit step I have not included, but which can be proved easily enough.) The last two steps follow from the definition of \(w \) and \(\delta^* \). It follows that the claim is proved.

Since \(S_0 = \Lambda \)-closure\((s_0) \) is the start state of \(M' \),

\[
\delta^*_M(S_0, w) = \delta^*_s(s_0, w)
\]

Also, since \(w \) is in \(L(M') \) if and only if \(\delta^*_M(S_0, w) \) is a final state, from the above, \(w \) is in \(L(M') \) if and only if \(\delta^*(s_0, w) \) contains a final state in \(M_1 \), which is true if and only if \(w \) is in \(L(M_1) \).

Proof of 3. If a language \(L \) is accepted by some FA, then there is a regular expression \(r \) such that \(L = \langle r \rangle \).

Let \(L \) be accepted by an FA \(M \) with states \(s_1, s_2, ..., s_n \). Assume that \(s_1 \) is the start state of \(M \) and that the set of final states of \(M \) is denoted \(F \). Define the set \(L(i,j,k) \) to be the set of all words that cause \(M \), starting in state \(s_i \) to enter state \(s_j \) without passing through any of the states \(s_{k+1}, s_{k+2}, ..., s_n \). In other words, \(L(i,j,k) \) is the set of words that start in \(s_i \) and end in \(s_j \) and **pass through** only
the states \(s_1, s_2, ..., s_k \). "Passing through" means entering and leaving, like one does in a toll booth or turnstile. It does not mean "landing there" and staying there.

The language accepted by \(M \) is the set of all words that cause \(M \), when starting in state \(s_i \), to stop in a final state, passing through any of the states of \(M \). This means that, if \(s_i \) is a final state, then \(L(1,f,n) \) consists only of words accepted by \(M \), and that

\[
L = L(1,f_1, n) \cup L(1,f_2, n) \cup \ldots \cup L(1,f_m, n)
\]

where \(F = \{ s_{f_1}, s_{f_2}, \ldots, s_{f_m} \} \).

From the definition of \(L(i,j,k) \) it follows that, for each \(i \) and \(j \), \(1 \leq i, j \leq n \), \(L(i,j,0) \) is the set of all symbols that label the transitions from \(s_i \) to \(s_j \), and that in addition, if \(i = j \), then the null string is also in this set. Formally,

\[
L(i, j, 0) = \begin{cases}
\{ a \mid \delta(\sigma_i, a) = \sigma_j \} \cup \Lambda & \text{if } i = j \\
\{ a \mid \delta(\sigma_i, a) = \sigma_j \} & \text{if } i \neq j
\end{cases} \tag{5}
\]

Furthermore, for all \(k > 0 \), the set \(L(i,j,k) \) can be defined recursively from the following observation. (I will use the language abusively and talk about a word starting in a state or passing through a state or even visiting a state. What this means of course is that the word causes \(M \) to enter a state while reading it, or causes \(M \) to pass through a state while reading it, and so on.)

1. If a word starts in state \(s_i \) and terminates in state \(s_j \) without going through any states \(s_{k+1}, s_{k+2}, \ldots, s_n \), then it falls into one of two cases:

2. It starts in state \(s_i \) and terminates in state \(s_j \) without going through any states \(s_k, s_{k+1}, \ldots, s_n \), or

It starts in state \(s_i \) and terminates in state \(s_j \) and enters state \(s_k \), and then visits other states without passing through any of \(s_{k+1}, s_{k+2}, \ldots, s_n \), possibly passing through \(s_k \) many times, and then returns to \(s_k \) for the last time, and then travels a path to state \(s_j \).

In short, either the word was already in \(L(i,j,k-1) \) (Case 1) or it is in \(L(i,j,k) \) but not in \(L(i,j,k-1) \), and is there because it passes through state \(s_k \), and we can break the word into 3 pieces: the "left" piece \(x \) that first reaches \(s_k \) without going through any states \(s_k, s_{k+1}, \ldots, s_n \), the "middle" piece \(y \) that travels around \(M \) without going through any states \(s_k, s_{k+1}, \ldots, s_n \) until it visits \(s_k \) for the last time, and the "right" piece \(z \) that reaches \(s_j \) from \(s_k \) without passing through any states \(s_k, s_{k+1}, \ldots, s_n \). Since \(x \) in in \(L(i,k,k-1) \), \(y \) is in \(L(k,k,k-1)^* \) and \(y \) is in \(L(k,j,k-1) \), it follows that

\[
L(i,j,k) = L(i,j,k-1) \cup L(i,k,k-1) \cdot L(k,k,k-1)^* \cdot L(k,j,k-1) \tag{6}
\]

Claim: For every \(i \) and \(j \), \(1 \leq i, j \leq n \), and for every \(k \), \(0 \leq k \leq n \), the set \(L(i,j,k) \) can be represented by a regular expression.

Proof.
We can prove this by induction on k.

For each i and j, the set \(L(i,j,0) \) is a finite set and is therefore regular. Let \(r(i, j, 0) \) denote the regular expression such that \(L(i,j,0) = \langle r(i, j, 0) \rangle \).

Assume that the claim is true for \(k-1 \). Then, for any i and j, there exists a regular expression that we can denote \(r(i,j,k-1) \) such that \(L(i,j,k-1) = \langle r(i,j,k-1) \rangle \). From formula (6) and the induction hypothesis it follows that

\[
L[i, j, k] = \langle r[i, j, k-1] \rangle + \langle r[i, k, k-1] \rangle \cdot \langle r[k, j, k-1] \rangle^* \cdot \langle r[k, j, k-1] \rangle
\]

where each of \(r(i,j,k-1), r(i,k,k-1), r(k,k,k-1), \) and \(r(k, j, k-1) \) is a regular expression. Since the right hand side is a regular expression, it follows that \(L(i,j,k) \) is a regular language, and that we can let \(r(i,j,k) \) denote the regular expression that defines it. By the axiom of induction, it is true for all \(k \geq 0 \). Of course, for \(k > n \), the sets do not change since there are no states in the FA numbered higher than \(s_n \), so although in principle all of these sets exist, we are only concerned about the ones for which \(k \leq n \). QED.

The truth of the theorem follows from formulas (4) and (7). Formula (4) states that \(L \) is a finite union of the sets \(L(1,s,n) \) for which \(s \) is a final state of \(M \), and formula (7) states that each of the sets \(L(1,s,n) \) can be represented by regular expressions, so that

\[
L = \langle r(1, f_1, n) + r(1, f_2, n) + \ldots + r(1, f_m, n) \rangle
\]

proving that \(L \) is a regular expression. QED.

The proof of the theorem implicitly defines a tabular algorithm that can be used to construct the regular expression. It also suggests a recursive function that can be used to construct the expression. The most efficient solution, however, would be a dynamic programming solution, combining the simple and inefficient table-driven approach with the recursive solution. I will not describe that algorithm here. For now, I present a recursive algorithm, written in C with pseudo-code.

Let \(M \) have states 1, 2, 3, ..., n. Assume the alphabet is \(\Sigma \). Assume that \(\delta(i,a) \) is the transition function, which can also be represented by a 2D matrix \(\delta[i,a] \).

The main function is \(\text{BuildRE()} \), which takes the FA, and integers i, j, and k, and constructs a string \(re \) that contains the regular expression, fully parenthesized to avoid possible ambiguities. The FA is used inside the function in pseudo-code that looks up all symbols that cause a transition from state i to state j. I leave out necessary declarations and such.
void BuildRE (FA M, int i, int j, int k, char re[])
{
 char re1[MAXSIZE];
 char re2[MAXSIZE];
 char re3[MAXSIZE];
 char re4[MAXSIZE];

 if (k == 0) {
 re = { a in SIGMA | M.delta(i,a) == j };
 if (i == j)
 re = re + 'LAMBDA';
 } else { // k > 0
 BuildRE (M, i, j, k-1, re1);
 BuildRE (M, i, k, k-1, re2);
 BuildRE (M, k, k, k-1, re3);
 BuildRE (M, k, j, k-1, re4);
 sprintf (re, "(%s)+(%s)(%s)*(%s)", re1, re2, re3, re4);
 }
}

The main program is simply

void main ()
{
 sprintf(re, "()");
 for (i = 1; i <= n; i++)
 if (finalstate(i)) {
 BuildRE(M, 1, i, n, temp_re);
 sprintf(re, "(%s)+(%s)", re, temp_re);
 }
 printf("%s\n", re);
}
Example

We will build the regular expression for the FA below using a table-driven method.

```
Example
We will build the regular expression for the FA below using a table-driven method.
```

```
<table>
<thead>
<tr>
<th>i,j</th>
<th>k</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i,j</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1,1</td>
<td>Λ</td>
<td>Λ</td>
</tr>
<tr>
<td>1,2</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>1,3</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>2,1</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>2,2</td>
<td>Λ</td>
<td>Λ</td>
</tr>
<tr>
<td>2,3</td>
<td>b</td>
<td>b + ab</td>
</tr>
<tr>
<td>3,1</td>
<td>Φ</td>
<td>Φ</td>
</tr>
<tr>
<td>3,2</td>
<td>a + b</td>
<td>a + b</td>
</tr>
<tr>
<td>3,3</td>
<td>Λ</td>
<td>Λ</td>
</tr>
</tbody>
</table>

Note. L(1,3,3) is simplified from a*b + a*b(Λ + (a+b)a*b)* ( Λ + (a+b)a*b). There is no need to calculate any other parts of the table. Since L(M) is the union of L(1,2,3) and L(1,3,3), the final expression is

L(M) = a(aa)* + a*b ( (a+b) a*b )* ( Λ + (a+b)(aa)* )