
C SCI  265 Computer Theory I Prof. Stewart Weiss
Proving Regularity and Non-regularity

Comments on the Pumping Lemma for Regular Languages

I will not go over the proof of the lemma here. The purpose of this section is to help you to 
understand how to use the lemma.

The pumping lemma is used to prove that languages are not regular.  You cannot use it to prove 
that languages are regular.

Using the pumping lemma takes practice.  There is a precise set of steps to follow for using it to 
prove that a language is not regular.  Restating the lemma in plain English,

If L is a regular language then there exists a constant N > 0 such that, for every word w in L 
whose length is at least N,  we can write w = xyz, where |xy| <= N and |y| > 1 and for all values 
of k >= 0, xykz  is also in L.

People often have trouble using the lemma because it has several alternating "there  exist" and 
"for all" and "implies" inside it.  The "there exist" and "for all" parts are called  quantifiers in 
logic (existential and universal respectively). We can state the lemma very concisely using the 
logical quantifiers and operators as follows:

L is regular  => (∃N > 0) (∀w  L)  (|w|  N) =>  

(∃x,y,z) (w = xyz    |xy|  N  |y| > 0   (∀ k  0) ( xykz  L ) )

This does not make it look any easier to use; it makes it look even more foreboding. However, it 
is useful for the following reason. To use the pumping lemma to show that L is not regular, you 
have  to  show  it  does not  satisfy the  pumping lemma.  Therefore you have  to  show that  the 
NEGATION of the conclusion of the lemma is true. If you can intuitively understand how to 
form the negation of a logical sentence with so many "there exists" and "for all" quantifiers then 
you can just skip ahead. If not, follow along. You construct the negation of the conclusion of the 
lemma, you will see that you have to show that:

(∀N > 0) (∃w in L s.t. |w|  N)  and (∀x, y, z) s.t w= xyz and |xy|  N and |y| > 0, ∃ k >= 0 s.t. 
xykz  L.

This does not look any easier, but what it reduces to is the following. You have to show that for 
any N, there is a special w, such that this w cannot be broken up into xyz in any way that 
satisfies the conditions of the lemma and whose y piece can be pumped. Showing that y cannot 
be pumped means showing that there is one value of k for which xykz  is not in L. Thus, your 
task is to do the following: 

1. Let N be an arbitrary number. (It has to stay a symbol.)

2. Pick a w in L whose length is at least  N. 

3. Show that no matter how you choose break up w into xyz such that |xy| <= N and |y| > 0, 
you can always find one value of k such that  xykz  L.
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The hardest part is to pick w.  You have to pick w in such a way that it cannot be pumped. It 
must be chosen to depend on N in some way, and to reflect something about the properties that 
define the language. Once you have picked w, you have to figure out a value of k that defies the 
lemma. This will often be obvious, but not always.

Examples

1. (Easy) Let L1 = { ap | p is a prime number }.  Assume N is the constant from the pumping 
lemma and let w = ap, where p is a prime number greater than N.  Then w = xyz where |y| > 0. 
Let m = |y|.  Then for all values of k >= 0,  xykz  L1.  In particular,  xypz  L1.  But 

|xyp+1z| = |xyz| + |yp | = |w| + |yp | = p + pm = p(1+m).

Since (1+m) > 1, p(1+m) is not a prime number,  so  xypz   L1, contradicting the pumping 
lemma. Therefore, L1 cannot be regular.  Notice that we did not need to use the fact that |xy| <= 
N in this proof.

2. (A little harder)  Let  L2= { anbn |  n > 0 }.   Assume N is the constant from the pumping lemma 
and let w = aNbN.  Then w = xyz where |y| > 0 and |xy| <= N. Let m = |y|.  Since |xy| <= N, xy 
consists of only a's and in particular, y = am. This is because xy comes from the part of w before 
the first b. Assume x = ah  for some h >= 0. Then z = aN-m-hbN.  By the pumping lemma,  for all 
values of k >= 0,  xykz  L2.  In particular,  xy2z   L2.  But

 xy2z = ahamam aN-m-hbN =  aN+mbN 

Therefore  xy2z   L2, contradicting the pumping lemma. Therefore, L2 cannot be regular. 

3.  (Harder  still)  This  one  is  much  more  subtle  than  the  first  two,  which  are  relatively 
straightforward  applications  of  the  lemma.   Let   =  {  0  1  2  3  4  5  6  7  8  9  }  and  define 
L3 = { x * | x is an initial segment of the decimal part of the infinite decimal expansion of  }. 
In other words, since pi = 3.141592654... , L3 contains the strings 1, 14, 141, 1415, 14159, and so 
on.  Suppose that L3 is regular.   Assume N is the constant from the pumping lemma. Since  L3 is 
infinite, we can choose a w in L3 whose length is at least N. Then by the lemma, we can write 

w = xyz where |y| > 0 and |xy| <= N and for all k >= 0,  xykz  L3.  

By the definition of L3, if uv  L3 then so is u, because if uv is an initial segment of  then so is 
u, since it is an initial segment of an initial segment of .  This means that, since for any k, xykz 
 L3,  xyk  L3.   Now if I were following the lack of rigor used by some authors, I could just 
say, well that is ludicrous, because  is not a repeating decimal and if for all k, xyk were an initial 
segment  of , it would imply that  is a repeating decimal, but that is not a proof, and it is also 
flawed because   has an infinite expansion and each of these strings is finite and we need to 
somehow use the idea of convergence if we want to cross the bridge from the finite world to the 
infinite world.
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Let D(x) denote the value of x as a decimal, and let D(y) denote the value of y as a number. For 
example, if x is the string '1415', then D(x) is the decimal value 1,415 and if y is the string 
'92654', then D(y) = 92,654.   Suppose that |x| = r and |y| = m.  Then the value of the string xy as 
a number to the right of the decimal point in  is  

10-r (D(x) + 10-m D(y))

For example, with the above strings x and y, with lengths 4 and 5 respectively, the value of '.xy' 
would be

10-4 *( 1415 + 10-5 *92654 )= 10-4 *(1415  + .92654) = .141592654

The value of 'xyy' would be 

10-r (D(x) + 10-m D(y) + 10-2m D(y))

= 10-4 *( 1415 + 10-5 *92654  + 10-10 *92654 )

= 10-4 *(1415  + .92654 + .0000092654 ) = .14159265492654

In general, the decimal value of a string of the form  xyk is 

10−r⋅D x ∑
j=1

k

10−mj⋅D  y 
Since each of the strings xyk is an initial segment of , as k goes to  , it follows that the sum 
converges to

10−r⋅D x ∑
j=1

∞

10−mj⋅D  y  = 10−r⋅D xD  y ⋅∑
j=1

∞

10−mj
= 10−r⋅D xD  y ⋅110m

−1 
which would imply that 

−3=10−r
⋅D x D  y⋅ 1

10m
−1 

But the right hand side of this equation is a rational number, consisting of a products and sums of 
rational numbers, whereas  is irrational, as is   -3.  Therefore the assumption of regularity is 
false.

The Converse.

The converse of the  pumping lemma is  false.   Namely,  there  are  languages  that  satisfy the 
pumping lemma but  are  not  regular.  They are  sometimes easy  to  find,  other  times not.  An 
example of one such language is L = { uuRv | u, v  } where  = {a,b}. 

First let me show that this language satisfies the pumping lemma. I need a value of N for which 
the lemma is true. N= 4 works. Now let w be any word whose length is at least 4.  Assume  |u|= 
1. Then |uR| = 1 and |v| >= 2.    In this case, let w = xyz where x is uuR, y  is the first letter of v 
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and z is the second letter of v.  Then |xy| = 3 < 4 and |y| > 0.  Furthermore, every string  xy kz is of 
the form  uuRv, since the first letter of v is being pumped and the first part of the word is still a 
palindrome, so all such words are in L.

Suppose that |u| > 1.  In this case, let x be the null string, Λ, and y be the first letter of u, and z 
the rest  of the string.    For any symbol s,  ss  is a palindrome;  i.e.,  ss   is of the form  uuR. 
Therefore, for any k >= 2,  since x = Λ and y is a symbol s, xykz is of the form  ss uuRv which is 
of the form  yyRt if you let y = s and t =  uuRv. Hence for k > 1 the words are in L.   If k = 1, it is 
the original string, which is therefore in L.  If k = 0, then we have removed the first letter of u. 
The string u2u3...ununun-1...u3u2  is the beginning of the word,  so it is of the form uuR and is 
followed by a non-null string, so this too is in L.  Hence L satsifies the lemma when N = 4.

We cannot  yet  prove  that   L   is  not  regular  be  cause  we need another  method of  proving 
nonregularity. That will be the Myhill-Nerode Theorem, to follow.

The Myhill-Nerode Theorem

The  Myhill-Nerode  theorem states,  in  essence,  that  regular  languages  are  precisely  those 
languages that induce a finite equivalence relation on the set of all strings over their alphabets. 
To state it precisely, we need to define what that equivalence relation is.

Definition. Let L be a language over *.  For any two strings x and y ∈ *, we say that x and y 
are L-equivalent and write  x ≡L y if, for any z in *,  xz ∈ L if and only if yz ∈ L.

Observe that 

1. x ≡L x

2. x ≡L y iff y ≡L x

3. x ≡L y and y ≡L z implies that x ≡L z.

Since ≡L  has these properties, it is an equivalence relation.  Obviously, if x ≡L y then x ∈L iff y ∈ 
L because from the definition,  x = xΛ ∈ L iff y = yΛ ∈ L. 

It enjoys one other property:

4. For any w ∈ *, x ≡L y implies xw ≡L yw.  

To see this , suppose x ≡L y and let w ∈ *. Let z ∈ * .  Let us denote wz by v. Then

xwz = xv ∈ L iff  yv = ywz ∈ L because  x ≡L y iff  for any v ∈ *  yv ∈ L .

hence xw ≡L yw.

This relation is called a right congruence because of this last property.  

It is not true on the left side. In other words,  it is not true that if x ≡L y then for all w, wx ≡L wy. 
To see this, consider the language of all words having b as the second letter:  

L = < (a+b)b(a+b)* >  
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Consider the two words a and b.  Then a ≡L b because for any word z, az ∈ L iff z starts with b, 
and bz = bb ∈ L iff z starts with b.  But aa is not L-equivalent to ab because  ab ∈L but aa L. 
This is why this is called a right-congruential relation but not a left-congruential relation.

Recall that an equivalence relation creates a partition on a set, i.e., a collection of non-empty 
subsets that are mutually non-intersecting and whose union is the entire set. The "is in the same 
time zone" relation divides the world into 24 equivalence classes. This is a finite set of classes. 
For two rational numbers p and q, the relation, p ≡ q iff p and q reduce to the same irreducible 
fraction, partitions the set of all rational numbers into infinitely many equivalence classes.

The fact that a language induces the ≡L  relation on * means that a language implicitly defines a 
partition of * into classes of words that are equivalent to each other.

Examples

Let L = <a*>.  Consider the set S = {Λ, b}.  All words in * are L-equivalent to one of these two 
words.  To see this, pick any word w ∈ *.  If w has any b's in it at all, it is L-equivalent to b:

wx ∈ L iff bx ∈ L

is true because if w has any b's, then for all x ∈ *, wx  L and bx  L as well. If w has no b's at 
all, then it is equivalent to Λ:

wx ∈ L iff  x ∈ L

is true because if w has no b's at all, either it is Λ or it is a sequence of a's. In either case, wx ∈ L 
is true iff x has only a's or is Λ, which is true iff x ∈ L. 

For this particular L, there were two equivalence classes. Consider the language,  

L = { anbn | n > 0 }.  

Consider the set S = {b} ∪ { anbm| n > 0  and m <= n}.  Let x ∈ *. If x is of the form, an, it is L-
equivalent to itself, and x ∈ S.  If it is of the form anbm and m <= n, it is also L-equivalent to 
itself. If x is in any other form, it is L-equivalent to b, because, for any z ∈ *, neither bz nor xz 
will be in L.  The word b acts as a representative of the rejected words in *.

Notice that  the first  language had a finite set of equivalence classes,  and the second had an 
infinite  set.  This  fact  is  important  –  it  is  the  essence  of  the  Myhill-Nerode  theorem.  This 
finiteness is encapsulated in the following definition.

Definition.  Let L be a language over * and let S ⊆ *.  S is called a spanning set for L if

1. S is a finite set, and

2. For every w ∈ *, there exists a y ∈ S such that w ≡L y.

In other words, a spanning set is a finite collection of words with the property that, for each word 
w ∈ *, there is some element y ∈ S that is equivalent to it with respect to L. This means that for 
all possible words z that can be appended to w, wz ∈ L if and only if yz ∈ L.  

Myhill-Nerode Theorem.  A language is regular if and only if it has a spanning set.
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Proof.

One direction of the proof is fairly easy to understand. The other direction is a little more abstract 
but also very straightforward.

Let L be a regular language.  Then there is a FA M such that L = L(M).  Suppose that the set of 
states of M is Q = { q1, q2, q3, ..., qn } where q1 is the start state.  Let F denote the set of states that 
are final states in M.

Let us say that a word w reaches a state q if δ*(q1, w) = q. Call a state in Q reachable if there 
exists a word in * that reaches it.  For each reachable state q of Q, pick any one of the words 
that reaches q. Call this word, wq.  Then the set S = { wq | q ∈ Q } is a spanning set for L.

To prove this we need to show that for any word x ∈ *, there is a word in S that is L-equivalent 
to it. Therefore, let x be an arbitrary word in *.  This word x reaches some state q in Q.   Since 
wq is the word in S that reaches q, wq and x both reach q.  Pick any word z  ∈ *. Then wqz 
reaches the same state as xz because wq and x both reach q and from q, on reading z, the FA M 
enters a unique state; i.e., 

δ*(q1, xz ) = δ*(δ*(q1, x ) , z) = δ*(δ*(q1, wq ) , z) = δ*(q1, wqz ) 

Therefore,  xz ∈ L iff δ*(q1, xz ) ∈ F iff δ*(q1, wqz ) ∈ F iff  wqz ∈ L, proving that S is a spanning 
set for L.

Conversely, suppose that L has a spanning set S.  We will construct an FA that accepts L.  To do 
this we will associate a unique state to each member of the spanning set.  Then we will give the 
rule for which state is a start state and which states are final states. Then  we define the transition 
function for M. Finally we have to prove that the machine we constructed accepts L.

For each word y in S, we create a unique state in M. We will call the state that we created for y, 
qy.  Let Q = { qy | y ∈ S}.   Then Q is the set of all states of M.  Since S is a spanning set for L, 
for every word w ∈ *, there is an element y ∈ S such that w ≡L y. This is also true for Λ, the 
null string.  Let y0 be the particular word in S such that Λ ≡L y0. Make the state qy  created for this 
y0 the starting state. Call it q1 instead of qy0.  Now the states in Q that will be final states are the 
ones that are L-equivalent to some word in L.  In fact, if y is a word in S that is L-equivalent to a 
word in L, then y itself must also be in L. To see this, remember that if w ∈ L and w ≡L y, then 
y ∈ L. Therefore, it makes sense to define the set of final states to be F = { qy | y in S and y ∈ L}.

The transition function, δ, is defined by the following rule:  For each state qy and each symbol a, 
δ(qy, a) = qz  iff ya ≡L z. Since ya is some word in *, it is L-equivalent to some unique z in S. 
This just says that we have to find that unique z and create the transition from qy to qz on a.

The FA M is thus defined. Now it remains to show that it accepts L.  To do this we have to prove 
that the transitive closure of δ, δ*,  has the desired property. 

Claim:  For any w ∈ *, and any state qy,  δ*(qy, w ) = qz iff yw ≡L  z. 

Proof. We can prove this by induction on the length of w. If |w| = 0, then w is the null string and 

 δ*(qy, Λ ) = qy. Since  y  ≡L  y, it is true in the base case. Assume it is true for w such that |w| = k 
and let w be a string of length k+1.  Then w = va for some string v of length k.  Therefore, 
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δ*(qy, w ) = δ*(qy, va ) = δ(δ*(qy, v ), a ) = δ(qx, a )  = qz

where yv ≡L x, by the inductive hypothesis and δ(qx, a ) = qz iff xa  ≡L z by the definition of the 
transition function.  Since  yv ≡L x,  we have

yva ≡L xa and  xa  ≡L z

which implies by the transitivity of the relation that

yva ≡L z 

and since w = va, 

yw ≡L  z

We have just shown that  δ*(qy, w ) = qz  iff yw ≡L z, proving the above claim. 

The  claim is true for all states q in M, and in particular it is true when qy is the start state of M; 
i.e.,  

δ*(q1, w ) = qz iff  Λw ≡L  z iff w ≡L z.

Now 

w ∈ L

iff there exists a y ∈ S such that w  ≡L  y  and y ∈ L

iff δ*(q1, w ) = qy  and qy ∈ F

iff  w ∈ L(M). 

Hence, we have constructed a FA M that accepts exactly L, and the theorem is proved.

Using The Myhill-Nerode Theorem

How is the Myhill-Nerode theorem used?  Because it is an “if and only if” theorem, it provides a 
means of proving that languages are regular and that they are not regular. As we saw above, 
every language, regular or not, induces the L-equivalence relation on the strings over  *. The 
difference between regular languages and non-regular languages is that, for regular languages, 
the  number of equivalence classes  of this  relation is  finite.  This is  essentially  what  Myhill-
Nerode states.

Proving Languages Regular

If a language has a spanning set, it must be regular.  If it can be shown that it cannot possibly 
have a spanning set, it is not regular.  Therefore, to use the theorem to show that L is regular, it is 
enough to find a single spanning set for L.

Example

Let L = {anbbam | n, m  0 }.  Let us look for a spanning set. The first part of the word up to the 
first b is independent of the value of n.  All words of the form an are L-equivalent. To see this, let 
x be any word over {a,b} and consider two words anx and amx. Either both are in L or both are 

7



C SCI  265 Computer Theory I Prof. Stewart Weiss
Proving Regularity and Non-regularity

not in L, depending on whether x is of the form  akbbam or not. Since Λ is in this set, we use Λ as 
its representative.  Next, consider the strings that are of the form anbb. These are not L-equivalent 
to the first group -- take  an and anbb. If we append Λ to each we see that an is not in L but anbb is. 
All strings of this form though are L-equivalent to each other. Again, we can take the shortest 
one, bb, as its representative. Is that all?  Are all strings equivalent to one or the other? What 
about the string 'b'?  Is b L-equivalent to bb? No, because bb is in L but b is not.  There are now 
three words in our spanning set:

S = { Λ, b, bb }.

Is this enough? Pick any word w in A*. If w is a word like bab, is it L equivalent to one of these? 
If we append Λ to bab and to bb, we see it is not in its class since bb is in L and bab is not. If we 
append b to bab and to b, we see that babb is not in L but bb is, so bab is not L-equivalent to b. 
What about appending abba to both bab and Λ. The first produces bababba,  and the second, 
abba. The first is not in L and the second is. Therefore, S is not large enough yet.  It needs the 
representative of the class of words that start with a b and are followed by an a, so that they 
cannot  be  in  L.  Take  ba  as  its  representative.  No  word  appended  to  ba  will  be  in  L,  and 
conversely every word beginning ba will fail to be in L also. The spanning set is now

S = {Λ, b, ba, bb }.

This set is sufficient, and no set with fewer elements is sufficient. This shows that L is regular 
and from the proof of the Myhill-Nerode theorem we can use the technique to construct a 4-state 
FA accepting L. 

Proving Non-regularity

To prove that a language is not regular,  we have to show that no spanning set exists, which 
means  that  we  have  to  show  that  there  are  infinitely  many  equivalence  classes  in  the  L-
equivalence relation for L.  Therefore, the typical paradigm for using Myhill-Nerode to show 
non-regularity  is  to  show  that  there  are  infinitely  many  words  in  L  that  are  in  different 
equivalence  classes.  When two words  are  in  different  equivalence  classes,  we say  they  are 
distinguishable.

Example 1

Consider the language L of palindromes over {a,b}.  Consider two words of the form anb and 
amb, where n ≠ m.  Pick any x ∈ *. Then  anbx ∈ L implies that x is of the form bkan for some k, 
which implies  that  for  this  particular  x,   ambx  ∉ L,  since  this  would not  be  a  palindrome. 
Therefore,  anb and amb are not L-equivalent.  This implies that there are infinitely many words of 
the form  anb that are not in the same equivalence class, and thus that L is not regular.  

Example 2

Let us return to the language L = { uuRv | u, v  } where  = {a,b}. We saw that this language 
satisfies the pumping lemma. We can now show that it  is not regular.   We need to identify 
infinitely many words in * that are  distinguishable from each other.  Consider two words of the 
form ab2n+1a and ab2m+1a, where n ≠ m. It  is important that the number of b's is odd in each 
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because neither of these words by itself is an even palindrome (a word having the form uuR) 
since they both have odd length. More importantly, no prefix of either of them is of the form uuR. 
because every prefix begins with 'ab' and would have to end with 'ba' and be of even length. But 
the only way a prefix can begin with 'ab' and end with 'ba' is to contain all of the b's, and in this 
case it would be the entire word, which is of odd length.  But each of these is an odd palindrome 
-- it is its own reverse.

All we need to show is that for a single string x, ab2n+1ax  L, but ab2m+1ax ∉ L.  Let x = ab2n+1aa. 
The word ab2n+1ax = ab2n+1aab2n+1aa  is of the form uuRv and is thus in L, but the word ab2m+1ax  = 
ab2m+1aab2n+1aa  is not of the form uuRv because no prefix of ab2m+1aab2n+1a is an even palindrome, 
because  n ≠ m and since it starts with 'ab' it would have to end with 'ba' and the only prefixes of 
the word with this property are ab2m+1a and ab2m+1aab2n+1a. But we already saw that the first is not 
an even palindrome, and since  n ≠ m, the second cannot be. Thus ab2m+1ax ∉ L. This shows that 
for every distinct value of n and m, the words ab2n+1a and ab2m+1a are in distinct equivalence 
classes, and hence L does not have a spanning set and is not regular.

Conclusions

Both the pumping lemma and the Myhill-Nerode theorem provide direct means for showing that 
a language is not regular.  The pumping lemma may sometimes not be enough to show this, 
whereas the Myhill-Nerode theorem, in principle, can always show it.  Sometimes neither will 
yield an obvious proof. 

The Myhill-Nerode theorem provides a means of proving regularity, unlike the pumping lemma, 
and in using it, you can end up with a FA with a least number of states. If in building your 
spanning set, you fail to identify that two words belong to the same class, and you put them in 
the spanning set as unique representatives, then you will not have a spanning set, since two of its 
classes should really be one class. If you construct the spanning set properly, it will yield a FA of 
minimal size. 
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