
C SCI 265 Computer Theory I Prof. Stewart Weiss
Proving Regularity and Non-regularity

Comments on the Pumping Lemma for Regular Languages

I will not go over the proof of the lemma here. The purpose of this section is to help you to
understand how to use the lemma.

The pumping lemma is used to prove that languages are not regular. You cannot use it to prove
that languages are regular.

Using the pumping lemma takes practice. There is a precise set of steps to follow for using it to
prove that a language is not regular. Restating the lemma in plain English,

If L is a regular language then there exists a constant N > 0 such that, for every word w in L
whose length is at least N, we can write w = xyz, where |xy| <= N and |y| > 1 and for all values
of k >= 0, xykz is also in L.

People often have trouble using the lemma because it has several alternating "there exist" and
"for all" and "implies" inside it. The "there exist" and "for all" parts are called quantifiers in
logic (existential and universal respectively). We can state the lemma very concisely using the
logical quantifiers and operators as follows:

L is regular => (∃N > 0) (∀w  L) (|w|  N) =>

(∃x,y,z) (w = xyz  |xy|  N  |y| > 0  (∀ k  0) (xykz  L))

This does not make it look any easier to use; it makes it look even more foreboding. However, it
is useful for the following reason. To use the pumping lemma to show that L is not regular, you
have to show it does not satisfy the pumping lemma. Therefore you have to show that the
NEGATION of the conclusion of the lemma is true. If you can intuitively understand how to
form the negation of a logical sentence with so many "there exists" and "for all" quantifiers then
you can just skip ahead. If not, follow along. You construct the negation of the conclusion of the
lemma, you will see that you have to show that:

(∀N > 0) (∃w in L s.t. |w|  N) and (∀x, y, z) s.t w= xyz and |xy|  N and |y| > 0, ∃ k >= 0 s.t.
xykz  L.

This does not look any easier, but what it reduces to is the following. You have to show that for
any N, there is a special w, such that this w cannot be broken up into xyz in any way that
satisfies the conditions of the lemma and whose y piece can be pumped. Showing that y cannot
be pumped means showing that there is one value of k for which xykz is not in L. Thus, your
task is to do the following:

1. Let N be an arbitrary number. (It has to stay a symbol.)

2. Pick a w in L whose length is at least N.

3. Show that no matter how you choose break up w into xyz such that |xy| <= N and |y| > 0,
you can always find one value of k such that xykz  L.

1

C SCI 265 Computer Theory I Prof. Stewart Weiss
Proving Regularity and Non-regularity

The hardest part is to pick w. You have to pick w in such a way that it cannot be pumped. It
must be chosen to depend on N in some way, and to reflect something about the properties that
define the language. Once you have picked w, you have to figure out a value of k that defies the
lemma. This will often be obvious, but not always.

Examples

1. (Easy) Let L1 = { ap | p is a prime number }. Assume N is the constant from the pumping
lemma and let w = ap, where p is a prime number greater than N. Then w = xyz where |y| > 0.
Let m = |y|. Then for all values of k >= 0, xykz  L1. In particular, xypz  L1. But

|xyp+1z| = |xyz| + |yp | = |w| + |yp | = p + pm = p(1+m).

Since (1+m) > 1, p(1+m) is not a prime number, so xypz  L1, contradicting the pumping
lemma. Therefore, L1 cannot be regular. Notice that we did not need to use the fact that |xy| <=
N in this proof.

2. (A little harder) Let L2= { anbn | n > 0 }. Assume N is the constant from the pumping lemma
and let w = aNbN. Then w = xyz where |y| > 0 and |xy| <= N. Let m = |y|. Since |xy| <= N, xy
consists of only a's and in particular, y = am. This is because xy comes from the part of w before
the first b. Assume x = ah for some h >= 0. Then z = aN-m-hbN. By the pumping lemma, for all
values of k >= 0, xykz  L2. In particular, xy2z  L2. But

 xy2z = ahamam aN-m-hbN = aN+mbN

Therefore xy2z  L2, contradicting the pumping lemma. Therefore, L2 cannot be regular.

3. (Harder still) This one is much more subtle than the first two, which are relatively
straightforward applications of the lemma. Let  = { 0 1 2 3 4 5 6 7 8 9 } and define
L3 = { x * | x is an initial segment of the decimal part of the infinite decimal expansion of  }.
In other words, since pi = 3.141592654... , L3 contains the strings 1, 14, 141, 1415, 14159, and so
on. Suppose that L3 is regular. Assume N is the constant from the pumping lemma. Since L3 is
infinite, we can choose a w in L3 whose length is at least N. Then by the lemma, we can write

w = xyz where |y| > 0 and |xy| <= N and for all k >= 0, xykz  L3.

By the definition of L3, if uv  L3 then so is u, because if uv is an initial segment of  then so is
u, since it is an initial segment of an initial segment of . This means that, since for any k, xykz
 L3, xyk  L3. Now if I were following the lack of rigor used by some authors, I could just
say, well that is ludicrous, because  is not a repeating decimal and if for all k, xyk were an initial
segment of , it would imply that  is a repeating decimal, but that is not a proof, and it is also
flawed because  has an infinite expansion and each of these strings is finite and we need to
somehow use the idea of convergence if we want to cross the bridge from the finite world to the
infinite world.

2

C SCI 265 Computer Theory I Prof. Stewart Weiss
Proving Regularity and Non-regularity

Let D(x) denote the value of x as a decimal, and let D(y) denote the value of y as a number. For
example, if x is the string '1415', then D(x) is the decimal value 1,415 and if y is the string
'92654', then D(y) = 92,654. Suppose that |x| = r and |y| = m. Then the value of the string xy as
a number to the right of the decimal point in  is

10-r (D(x) + 10-m D(y))

For example, with the above strings x and y, with lengths 4 and 5 respectively, the value of '.xy'
would be

10-4 *(1415 + 10-5 *92654)= 10-4 *(1415 + .92654) = .141592654

The value of 'xyy' would be

10-r (D(x) + 10-m D(y) + 10-2m D(y))

= 10-4 *(1415 + 10-5 *92654 + 10-10 *92654)

= 10-4 *(1415 + .92654 + .0000092654) = .14159265492654

In general, the decimal value of a string of the form xyk is

10−r⋅D x ∑
j=1

k

10−mj⋅D  y 
Since each of the strings xyk is an initial segment of , as k goes to , it follows that the sum
converges to

10−r⋅D x ∑
j=1

∞

10−mj⋅D  y  = 10−r⋅D xD  y ⋅∑
j=1

∞

10−mj
= 10−r⋅D xD  y ⋅110m

−1 
which would imply that

−3=10−r
⋅D x D  y⋅ 1

10m
−1 

But the right hand side of this equation is a rational number, consisting of a products and sums of
rational numbers, whereas  is irrational, as is  -3. Therefore the assumption of regularity is
false.

The Converse.

The converse of the pumping lemma is false. Namely, there are languages that satisfy the
pumping lemma but are not regular. They are sometimes easy to find, other times not. An
example of one such language is L = { uuRv | u, v  } where = {a,b}.

First let me show that this language satisfies the pumping lemma. I need a value of N for which
the lemma is true. N= 4 works. Now let w be any word whose length is at least 4. Assume |u|=
1. Then |uR| = 1 and |v| >= 2. In this case, let w = xyz where x is uuR, y is the first letter of v

3

C SCI 265 Computer Theory I Prof. Stewart Weiss
Proving Regularity and Non-regularity

and z is the second letter of v. Then |xy| = 3 < 4 and |y| > 0. Furthermore, every string xy kz is of
the form uuRv, since the first letter of v is being pumped and the first part of the word is still a
palindrome, so all such words are in L.

Suppose that |u| > 1. In this case, let x be the null string, Λ, and y be the first letter of u, and z
the rest of the string. For any symbol s, ss is a palindrome; i.e., ss is of the form uuR.
Therefore, for any k >= 2, since x = Λ and y is a symbol s, xykz is of the form ss uuRv which is
of the form yyRt if you let y = s and t = uuRv. Hence for k > 1 the words are in L. If k = 1, it is
the original string, which is therefore in L. If k = 0, then we have removed the first letter of u.
The string u2u3...ununun-1...u3u2 is the beginning of the word, so it is of the form uuR and is
followed by a non-null string, so this too is in L. Hence L satsifies the lemma when N = 4.

We cannot yet prove that L is not regular be cause we need another method of proving
nonregularity. That will be the Myhill-Nerode Theorem, to follow.

The Myhill-Nerode Theorem

The Myhill-Nerode theorem states, in essence, that regular languages are precisely those
languages that induce a finite equivalence relation on the set of all strings over their alphabets.
To state it precisely, we need to define what that equivalence relation is.

Definition. Let L be a language over *. For any two strings x and y ∈ *, we say that x and y
are L-equivalent and write x ≡L y if, for any z in *, xz ∈ L if and only if yz ∈ L.

Observe that

1. x ≡L x

2. x ≡L y iff y ≡L x

3. x ≡L y and y ≡L z implies that x ≡L z.

Since ≡L has these properties, it is an equivalence relation. Obviously, if x ≡L y then x ∈L iff y ∈
L because from the definition, x = xΛ ∈ L iff y = yΛ ∈ L.

It enjoys one other property:

4. For any w ∈ *, x ≡L y implies xw ≡L yw.

To see this , suppose x ≡L y and let w ∈ *. Let z ∈ * . Let us denote wz by v. Then

xwz = xv ∈ L iff yv = ywz ∈ L because x ≡L y iff for any v ∈ * yv ∈ L .

hence xw ≡L yw.

This relation is called a right congruence because of this last property.

It is not true on the left side. In other words, it is not true that if x ≡L y then for all w, wx ≡L wy.
To see this, consider the language of all words having b as the second letter:

L = < (a+b)b(a+b)* >

4

C SCI 265 Computer Theory I Prof. Stewart Weiss
Proving Regularity and Non-regularity

Consider the two words a and b. Then a ≡L b because for any word z, az ∈ L iff z starts with b,
and bz = bb ∈ L iff z starts with b. But aa is not L-equivalent to ab because ab ∈L but aa L.
This is why this is called a right-congruential relation but not a left-congruential relation.

Recall that an equivalence relation creates a partition on a set, i.e., a collection of non-empty
subsets that are mutually non-intersecting and whose union is the entire set. The "is in the same
time zone" relation divides the world into 24 equivalence classes. This is a finite set of classes.
For two rational numbers p and q, the relation, p ≡ q iff p and q reduce to the same irreducible
fraction, partitions the set of all rational numbers into infinitely many equivalence classes.

The fact that a language induces the ≡L relation on * means that a language implicitly defines a
partition of * into classes of words that are equivalent to each other.

Examples

Let L = <a*>. Consider the set S = {Λ, b}. All words in * are L-equivalent to one of these two
words. To see this, pick any word w ∈ *. If w has any b's in it at all, it is L-equivalent to b:

wx ∈ L iff bx ∈ L

is true because if w has any b's, then for all x ∈ *, wx  L and bx  L as well. If w has no b's at
all, then it is equivalent to Λ:

wx ∈ L iff x ∈ L

is true because if w has no b's at all, either it is Λ or it is a sequence of a's. In either case, wx ∈ L
is true iff x has only a's or is Λ, which is true iff x ∈ L.

For this particular L, there were two equivalence classes. Consider the language,

L = { anbn | n > 0 }.

Consider the set S = {b} ∪ { anbm| n > 0 and m <= n}. Let x ∈ *. If x is of the form, an, it is L-
equivalent to itself, and x ∈ S. If it is of the form anbm and m <= n, it is also L-equivalent to
itself. If x is in any other form, it is L-equivalent to b, because, for any z ∈ *, neither bz nor xz
will be in L. The word b acts as a representative of the rejected words in *.

Notice that the first language had a finite set of equivalence classes, and the second had an
infinite set. This fact is important – it is the essence of the Myhill-Nerode theorem. This
finiteness is encapsulated in the following definition.

Definition. Let L be a language over * and let S ⊆ *. S is called a spanning set for L if

1. S is a finite set, and

2. For every w ∈ *, there exists a y ∈ S such that w ≡L y.

In other words, a spanning set is a finite collection of words with the property that, for each word
w ∈ *, there is some element y ∈ S that is equivalent to it with respect to L. This means that for
all possible words z that can be appended to w, wz ∈ L if and only if yz ∈ L.

Myhill-Nerode Theorem. A language is regular if and only if it has a spanning set.

5

C SCI 265 Computer Theory I Prof. Stewart Weiss
Proving Regularity and Non-regularity

Proof.

One direction of the proof is fairly easy to understand. The other direction is a little more abstract
but also very straightforward.

Let L be a regular language. Then there is a FA M such that L = L(M). Suppose that the set of
states of M is Q = { q1, q2, q3, ..., qn } where q1 is the start state. Let F denote the set of states that
are final states in M.

Let us say that a word w reaches a state q if δ*(q1, w) = q. Call a state in Q reachable if there
exists a word in * that reaches it. For each reachable state q of Q, pick any one of the words
that reaches q. Call this word, wq. Then the set S = { wq | q ∈ Q } is a spanning set for L.

To prove this we need to show that for any word x ∈ *, there is a word in S that is L-equivalent
to it. Therefore, let x be an arbitrary word in *. This word x reaches some state q in Q. Since
wq is the word in S that reaches q, wq and x both reach q. Pick any word z ∈ *. Then wqz
reaches the same state as xz because wq and x both reach q and from q, on reading z, the FA M
enters a unique state; i.e.,

δ*(q1, xz) = δ*(δ*(q1, x) , z) = δ*(δ*(q1, wq) , z) = δ*(q1, wqz)

Therefore, xz ∈ L iff δ*(q1, xz) ∈ F iff δ*(q1, wqz) ∈ F iff wqz ∈ L, proving that S is a spanning
set for L.

Conversely, suppose that L has a spanning set S. We will construct an FA that accepts L. To do
this we will associate a unique state to each member of the spanning set. Then we will give the
rule for which state is a start state and which states are final states. Then we define the transition
function for M. Finally we have to prove that the machine we constructed accepts L.

For each word y in S, we create a unique state in M. We will call the state that we created for y,
qy. Let Q = { qy | y ∈ S}. Then Q is the set of all states of M. Since S is a spanning set for L,
for every word w ∈ *, there is an element y ∈ S such that w ≡L y. This is also true for Λ, the
null string. Let y0 be the particular word in S such that Λ ≡L y0. Make the state qy created for this
y0 the starting state. Call it q1 instead of qy0. Now the states in Q that will be final states are the
ones that are L-equivalent to some word in L. In fact, if y is a word in S that is L-equivalent to a
word in L, then y itself must also be in L. To see this, remember that if w ∈ L and w ≡L y, then
y ∈ L. Therefore, it makes sense to define the set of final states to be F = { qy | y in S and y ∈ L}.

The transition function, δ, is defined by the following rule: For each state qy and each symbol a,
δ(qy, a) = qz iff ya ≡L z. Since ya is some word in *, it is L-equivalent to some unique z in S.
This just says that we have to find that unique z and create the transition from qy to qz on a.

The FA M is thus defined. Now it remains to show that it accepts L. To do this we have to prove
that the transitive closure of δ, δ*, has the desired property.

Claim: For any w ∈ *, and any state qy, δ*(qy, w) = qz iff yw ≡L z.

Proof. We can prove this by induction on the length of w. If |w| = 0, then w is the null string and

 δ*(qy, Λ) = qy. Since y ≡L y, it is true in the base case. Assume it is true for w such that |w| = k
and let w be a string of length k+1. Then w = va for some string v of length k. Therefore,

6

C SCI 265 Computer Theory I Prof. Stewart Weiss
Proving Regularity and Non-regularity

δ*(qy, w) = δ*(qy, va) = δ(δ*(qy, v), a) = δ(qx, a) = qz

where yv ≡L x, by the inductive hypothesis and δ(qx, a) = qz iff xa ≡L z by the definition of the
transition function. Since yv ≡L x, we have

yva ≡L xa and xa ≡L z

which implies by the transitivity of the relation that

yva ≡L z

and since w = va,

yw ≡L z

We have just shown that δ*(qy, w) = qz iff yw ≡L z, proving the above claim.

The claim is true for all states q in M, and in particular it is true when qy is the start state of M;
i.e.,

δ*(q1, w) = qz iff Λw ≡L z iff w ≡L z.

Now

w ∈ L

iff there exists a y ∈ S such that w ≡L y and y ∈ L

iff δ*(q1, w) = qy and qy ∈ F

iff w ∈ L(M).

Hence, we have constructed a FA M that accepts exactly L, and the theorem is proved.

Using The Myhill-Nerode Theorem

How is the Myhill-Nerode theorem used? Because it is an “if and only if” theorem, it provides a
means of proving that languages are regular and that they are not regular. As we saw above,
every language, regular or not, induces the L-equivalence relation on the strings over *. The
difference between regular languages and non-regular languages is that, for regular languages,
the number of equivalence classes of this relation is finite. This is essentially what Myhill-
Nerode states.

Proving Languages Regular

If a language has a spanning set, it must be regular. If it can be shown that it cannot possibly
have a spanning set, it is not regular. Therefore, to use the theorem to show that L is regular, it is
enough to find a single spanning set for L.

Example

Let L = {anbbam | n, m  0 }. Let us look for a spanning set. The first part of the word up to the
first b is independent of the value of n. All words of the form an are L-equivalent. To see this, let
x be any word over {a,b} and consider two words anx and amx. Either both are in L or both are

7

C SCI 265 Computer Theory I Prof. Stewart Weiss
Proving Regularity and Non-regularity

not in L, depending on whether x is of the form akbbam or not. Since Λ is in this set, we use Λ as
its representative. Next, consider the strings that are of the form anbb. These are not L-equivalent
to the first group -- take an and anbb. If we append Λ to each we see that an is not in L but anbb is.
All strings of this form though are L-equivalent to each other. Again, we can take the shortest
one, bb, as its representative. Is that all? Are all strings equivalent to one or the other? What
about the string 'b'? Is b L-equivalent to bb? No, because bb is in L but b is not. There are now
three words in our spanning set:

S = { Λ, b, bb }.

Is this enough? Pick any word w in A*. If w is a word like bab, is it L equivalent to one of these?
If we append Λ to bab and to bb, we see it is not in its class since bb is in L and bab is not. If we
append b to bab and to b, we see that babb is not in L but bb is, so bab is not L-equivalent to b.
What about appending abba to both bab and Λ. The first produces bababba, and the second,
abba. The first is not in L and the second is. Therefore, S is not large enough yet. It needs the
representative of the class of words that start with a b and are followed by an a, so that they
cannot be in L. Take ba as its representative. No word appended to ba will be in L, and
conversely every word beginning ba will fail to be in L also. The spanning set is now

S = {Λ, b, ba, bb }.

This set is sufficient, and no set with fewer elements is sufficient. This shows that L is regular
and from the proof of the Myhill-Nerode theorem we can use the technique to construct a 4-state
FA accepting L.

Proving Non-regularity

To prove that a language is not regular, we have to show that no spanning set exists, which
means that we have to show that there are infinitely many equivalence classes in the L-
equivalence relation for L. Therefore, the typical paradigm for using Myhill-Nerode to show
non-regularity is to show that there are infinitely many words in L that are in different
equivalence classes. When two words are in different equivalence classes, we say they are
distinguishable.

Example 1

Consider the language L of palindromes over {a,b}. Consider two words of the form anb and
amb, where n ≠ m. Pick any x ∈ *. Then anbx ∈ L implies that x is of the form bkan for some k,
which implies that for this particular x, ambx ∉ L, since this would not be a palindrome.
Therefore, anb and amb are not L-equivalent. This implies that there are infinitely many words of
the form anb that are not in the same equivalence class, and thus that L is not regular.

Example 2

Let us return to the language L = { uuRv | u, v  } where = {a,b}. We saw that this language
satisfies the pumping lemma. We can now show that it is not regular. We need to identify
infinitely many words in * that are distinguishable from each other. Consider two words of the
form ab2n+1a and ab2m+1a, where n ≠ m. It is important that the number of b's is odd in each

8

C SCI 265 Computer Theory I Prof. Stewart Weiss
Proving Regularity and Non-regularity

because neither of these words by itself is an even palindrome (a word having the form uuR)
since they both have odd length. More importantly, no prefix of either of them is of the form uuR.
because every prefix begins with 'ab' and would have to end with 'ba' and be of even length. But
the only way a prefix can begin with 'ab' and end with 'ba' is to contain all of the b's, and in this
case it would be the entire word, which is of odd length. But each of these is an odd palindrome
-- it is its own reverse.

All we need to show is that for a single string x, ab2n+1ax  L, but ab2m+1ax ∉ L. Let x = ab2n+1aa.
The word ab2n+1ax = ab2n+1aab2n+1aa is of the form uuRv and is thus in L, but the word ab2m+1ax =
ab2m+1aab2n+1aa is not of the form uuRv because no prefix of ab2m+1aab2n+1a is an even palindrome,
because n ≠ m and since it starts with 'ab' it would have to end with 'ba' and the only prefixes of
the word with this property are ab2m+1a and ab2m+1aab2n+1a. But we already saw that the first is not
an even palindrome, and since n ≠ m, the second cannot be. Thus ab2m+1ax ∉ L. This shows that
for every distinct value of n and m, the words ab2n+1a and ab2m+1a are in distinct equivalence
classes, and hence L does not have a spanning set and is not regular.

Conclusions

Both the pumping lemma and the Myhill-Nerode theorem provide direct means for showing that
a language is not regular. The pumping lemma may sometimes not be enough to show this,
whereas the Myhill-Nerode theorem, in principle, can always show it. Sometimes neither will
yield an obvious proof.

The Myhill-Nerode theorem provides a means of proving regularity, unlike the pumping lemma,
and in using it, you can end up with a FA with a least number of states. If in building your
spanning set, you fail to identify that two words belong to the same class, and you put them in
the spanning set as unique representatives, then you will not have a spanning set, since two of its
classes should really be one class. If you construct the spanning set properly, it will yield a FA of
minimal size.

9

	Comments on the Pumping Lemma for Regular Languages
	Examples
	The Converse.

	The Myhill-Nerode Theorem
	Using The Myhill-Nerode Theorem
	Proving Languages Regular
	Example

	Proving Non-regularity
	Example 1
	Example 2

	Conclusions

