1. Construct a Mealy machine equivalent to the Moore machine on page 165, exercise 3 (iii).
2. Construct a Moore machine equivalent to the Mealy machine on page 166, exercise 6(iii).
3. Design an FA with output, whichever is appropriate, that will output the input string with an extra 0 at the end if it has an odd number of 1-bits, and will output the input string with an extra 1 at the end if it has an even number of 1 -bits.
4. Design an FA with input alphabet $\{1\}$ and output alphabet $\{0,1\}$ that "divides by 5 " in the following sense: it treats the input string as a base-1 number and outputs a string of 0 's and 1's such that the total number of 1's output is equal to the input number divided by 5 , with no remainder. E.g. if the input number is 1111111 , then the output number should have one 1.
5. Define a collection of languages over the alphabet $\{a, b\}$ that is closed under union and intersection but not under complement. Justify why the collection has these properties. It need not be a rigorous proof, but the argument must be based on facts.
