1. Prove, using the Pumping Lemma, that \(\{a^nb^{2n} | n > 0 \} \) is not regular.

Let \(N \) be the constant of the lemma. Let \(w \) be the word \(a^N b^{2N} \). By the lemma, there exist \(x, y, \) and \(z \) such that \(w = xyz \), \(|xy| <= N \), \(|y| > 0 \), and for all \(k \), \(x^k y^k z \) is in \(L \). Since \(|xy| <= N \), \(y \) consists entirely of \(a \)'s. Let \(|y| = m \). By the lemma, the string \(xz \) is in \(L \), and \(xz = a^{N-m} b^{2N} \). But \(2N != 2(N-m) \), since \(m > 0 \), so this is a contradiction. Therefore, this language cannot be regular.

2. Let \(L = \{ wa^n | w \in \{a,b,c\}^* \} \). In other words, \(L \) consists of words \(wa^n \) where \(w \) contains \(a \)'s, \(b \)'s, and \(c \)'s and \(n \) is the length of \(w \).

i. Use the Myhill-Nerode Theorem to prove that \(L \) is not regular.

Consider the sequence of strings \(b, bb, bbb, ... \) for all \(k > 0 \). Pick any two of them, say \(b^k \) and \(b^m \), where \(k != m \). Then the word \(b^k a^k \) is in \(L \) but \(b^m a^k \) is not in \(L \). Therefore, no two of the words in this infinite sequence are in the same equivalence class, proving that \(L \) must have an infinite number of such classes. Therefore, \(L \) is not regular, by the Myhill-Nerode theorem.

ii. Use the Pumping Lemma to prove \(L \) is not regular.

Let \(N = 6 \). For any word \(w \) in \(L \) whose length is at least 6, we can write \(w = xyz \), where \(x \) is the null string, \(y = aa \), and \(z \) is the rest of \(w \). Note that \(|xy| <= 6 \) and \(|y| = 2 > 0 \). Because \(w \) is in \(L \) and its length is not a prime number, its length is an even number. Since \(|y| = 2 \), \(|xz| \) is an even number and cannot be 2, and for any \(k \),
|xy^kz| = |w| + 2k must also be an even number, implying it is not a prime number and hence \(xy^kz\) is in \(L\).

4. Give an example of a regular language \(R\) and a non-regular language \(L\) such that \(R + L\) is regular, and prove or justify that \(R + L\) is regular.

This is easy – let \(R\) be \((a+b)^*\) and let \(L\) be any of the non-regular languages above. The union of \(R\) and \(L\) is \(R\), since \(R\) contains all languages over \(\{a,b\}\).

5. Give an example of a regular language \(R\) and a non-regular language \(L\) such that \(R + L\) is non-regular, and prove or justify that \(R + L\) is non-regular.

Let \(R\) be any finite language and let \(L\) be a language containing \(R\) that is not regular. Then \(R + L = L\) and \(L\) is not regular. As an example, let \(R = \{ a^2, a^3 \}\) and let \(L = PRIME\). \(PRIME\) contains \(R\).

6. Let \(L\) be a regular language over \(\Sigma = \{a,b\}\). Define \(L' = \{ x \mid \text{there exists} \ y \in \Sigma^* \text{ such that} \ xy \in L \}\). Is \(L'\) regular? Either prove it is or give an example to show it may not always be.

\(L'\) is regular. To see this, let \(M\) be a FA accepting \(L\). Let it have states \(Q = \{ q_1, q_2, ..., q_n \}\). Let \(F\) be the set of final states of \(M\). Let \(M'\) be a FA identical to \(M\) except for which states are final states. For each state \(q\) in \(Q\) for which there exists at least one word \(z\) such that \(\delta^*(q, z)\) is a final state in \(M\), make \(q\) a final state in \(M'\).

Let \(w\) be in \(L(M')\). Then \(w\) reaches a final state of \(M'\), which means that \(w\) is a word that reaches a state \(q\) in \(M\) such that there is a word \(y\) such that \(\delta^*(q, y)\) is in \(L\). This implies that \(wy \in \Sigma^*\). Therefore, \(w\) is in \(L'\).

Conversely, let \(w\) be in \(L'\). Then there is a \(y \in \Sigma^*\) such that \(wy\) is in \(L\). Let \(q\) be the state in \(M\) that \(w\) reaches. Then \(\delta^*(q, y)\) is a final state in \(M\), which means that \(q\) is a final state in \(M'\), and hence \(w\) is in \(L(M')\). This proves that \(M'\) accepts \(L'\).