

1. Prove, using the Pumping Lemma, that  $\{a^nba^{2n} | n > 0\}$  is not regular.

Let N be the constant of the lemma. Let w be the word  $a^N ba^{2N}$ . By the lemma, there exist x, y, and z such that w = xyz,  $|xy| \le N$ , |y| > 0, and for all k,  $xy^k z$  is in L. Since  $|xy| \le N$ , y consists entirely of a's. Let |y| = m. By the lemma, the string xz is in L, and  $xz = a^{N-m}ba^{2N}$ . But 2N != 2(N-m), since m > 0, so this is a contradiction. Therefore, this language cannot be regular.

- 2. Let  $L = \{ wa^{|w|} | w \in \{a,b,c\}^* \}$ . In other words, L consists of words wa<sup>n</sup> where w contains a's, b's, and c's and n is the length of w.
  - i. Use the Myhill-Nerode Theorem to prove that L is not regular.

Consider the sequence of strings b, bb, bbb, ...,  $b^k$ , ... for all k > 0. Pick any two of them, say  $b^k$  and  $b^m$ , where k != m. Then the word  $b^k a^k$  is in L but  $b^m a^k$  is not in L. Therefore, no two of the words in this infinite sequence are in the same equivalence class, proving that L must have an infinite number of such classes. Therefore, L is not regular, by the Myhill-Nerode theorem.

ii. Use the Pumping Lemma to prove L is not regular.

Let N be the constant of the lemma. Let w be the word  $b^N a^N$ . w is in L. By the lemma, there exist x, y, and z such that w = xyz,  $|xy| \le N$ , |y| > 0, and for all k,  $xy^kz$  is in L. Since  $|xy| \le N$ , y consists entirely of b's. Let |y| = m. By the lemma, the string xz is in L, and  $xz = b^{N-m}a^N$ . Since m > 0, this word cannot be in L, so this is a contradiction. Therefore, this language cannot be regular.

- 3. Let  $L = \{ a^n | n \text{ is not a prime number } \}.$ 
  - i. Prove that L is not regular.

If L were regular, then its complement would be regular also, but the complement of L is the language we call PRIME, which we have already proved is not regular. Hence L is not regular.

ii. Prove that L satisfies the Pumping Lemma.

Let N = 6. For any word w in L whose length is at least 6, we can write w = xyz, where x is the null string, y = aa, and z is the rest of w. Note that  $|xy| \le 6$  and |y| = 2 > 0. Because w is in L and its length is not a prime number, its length is an even number. Since |y| = 2, |xz| is an even number and cannot be 2, and for any k,



 $|xy^kz| = |w| + 2k$  must also be an even number, implying it is not a prime number and hence  $xy^kz$  is in L.

4. Give an example of a regular language R and a non-regular language L such that R + L is regular, and prove or justify that R + L is regular.

This is easy - let R be  $(a+b)^*$  and let L be any of the non-regular languages above. The union of R and L is R, since R contains all languages over  $\{a,b\}$ .

5. Give an example of a regular language R and a non-regular language L such that R + L is non-regular, and prove or justify that R + L is non-regular.

Let R be any finite language and let L be a language containing R that is not regular. Then R + L = L and L is not regular. As an example, let R = {  $a^2$ ,  $a^3$  } and let L = PRIME. PRIME contains R.

6. Let L be a regular language over  $\Sigma = \{a,b\}$ . Define L' =  $\{x \mid \text{there exists } y \in \Sigma * \text{ such that } xy \in L \}$ . Is L' regular? Either prove it is or give an example to show it may not always be.

L' is regular. To see this, let M be a FA accepting L. Let it have states  $Q = \{ q_1, q_2, ..., q_n \}$ . Let F be the set of final states of M. Let M' be a FA identical to M except for which states are final states. For each state q in Q for which there exists at least one word z such that  $\delta^*(q, z)$  is a final state in M, make q a final state in M'.

Let w be in L(M'). Then w reaches a final state of M', which means that w is a word that reaches a state q in M such that there is a word y such that  $\delta^*(q, y)$  is in L. This implies that wy  $\in \Sigma^*$  Therefore, w is in L'.

Conversely, let w be in L'. Then there is a  $y \in \Sigma^*$  such that wy is in L. Let q be the state in M that w reaches. Then  $\delta^*(q, y)$  is a final state in M, which means that q is a final state in M', and hence w is in L(M'). This proves that M' accepts L'.