1. Prove, using the Pumping Lemma, that $\left\{a^{n} b a^{2 n} \mid n>0\right\}$ is not regular.

Let N be the constant of the lemma. Let w be the word $\mathrm{a}^{\mathrm{N}} \mathrm{ba}^{2 \mathrm{~N}}$. By the lemma, there exist x, y, and z such that $w=x y z,|x y|<=N,|y|>0$, and for all $k, x y^{k} z$ is in L. Since $|\mathrm{xy}|<=\mathrm{N}, \mathrm{y}$ consists entirely of a's. Let $|\mathrm{y}|=\mathrm{m}$. By the lemma, the string xz is in L , and $\mathrm{xz}=\mathrm{a}^{\mathrm{N}-\mathrm{m}} \mathrm{ba}^{2 \mathrm{~N}}$. But $2 \mathrm{~N}!=2(\mathrm{~N}-\mathrm{m})$, since $\mathrm{m}>0$, so this is a contradiction. Therefore, this language cannot be regular.
2. Let $L=\left\{w a^{|w|} \mid w \in\{a, b, c\}^{*}\right\}$. In other words, L consists of words wan where w contains a's, b's , and c's and n is the length of w.
i. Use the Myhill-Nerode Theorem to prove that L is not regular.

Consider the sequence of strings $\mathrm{b}, \mathrm{bb}, \mathrm{bbb}, \ldots, \mathrm{b}^{\mathrm{k}}, \ldots$ for all $\mathrm{k}>0$. Pick any two of them, say b^{k} and b^{m}, where $k!=m$. Then the word $b^{k} a^{k}$ is in L but $b^{m} a^{k}$ is not in L. Therefore, no two of the words in this infinite sequence are in the same equivalence class, proving that L must have an infinite number of such classes. Therefore, L is not regular, by the Myhill-Nerode theorem.
ii. Use the Pumping Lemma to prove L is not regular.

Let N be the constant of the lemma. Let w be the word $\mathrm{b}^{\mathrm{N}} \mathrm{a}^{\mathrm{N}} . \mathrm{w}$ is in L . By the lemma, there exist x, y, and z such that $\mathrm{w}=\mathrm{xyz},|\mathrm{xy}|<=\mathrm{N},|\mathrm{y}|>0$, and for all $\mathrm{k}, \mathrm{xy}^{\mathrm{k}} \mathrm{z}$ is in L. Since $|x y|<=N$, y consists entirely of b's. Let $|y|=m$. By the lemma, the string $x z$ is in L, and $x z=b^{N-m} a^{N}$. Since $m>0$, this word cannot be in L, so this is a contradiction. Therefore, this language cannot be regular.
3. Let $L=\left\{a^{n} \mid n\right.$ is not a prime number $\}$.
i. Prove that L is not regular.

If L were regular, then its complement would be regular also, but the complement of L is the language we call PRIME, which we have already proved is not regular.
Hence L is not regular.
ii. Prove that L satisfies the Pumping Lemma.

Let $\mathrm{N}=6$. For any word w in L whose length is at least 6 , we can write $\mathrm{w}=\mathrm{xyz}$, where x is the null string, $\mathrm{y}=\mathrm{aa}$, and z is the rest of w . Note that $|\mathrm{xy}|<=6$ and $|y|=2>0$. Because w is in L and its length is not a prime number, its length is an even number. Since $|y|=2$, $|x z|$ is an even number and cannot be 2 , and for any k,
$\left|x y^{k} z\right|=|w|+2 k$ must also be an even number, implying it is not a prime number and hence $x y^{k} z$ is in L.
4. Give an example of a regular language R and a non-regular language L such that $\mathrm{R}+\mathrm{L}$ is regular, and prove or justify that $\mathrm{R}+\mathrm{L}$ is regular.

This is easy - let R be $(\mathrm{a}+\mathrm{b})^{*}$ and let L be any of the non-regular languages above. The union of R and L is R, since R contains all languages over $\{a, b\}$.
5. Give an example of a regular language R and a non-regular language L such that $\mathrm{R}+\mathrm{L}$ is non-regular, and prove or justify that $\mathrm{R}+\mathrm{L}$ is non-regular.

Let R be any finite language and let L be a language containing R that is not regular. Then $R+L=L$ and L is not regular. As an example, let $R=\left\{a^{2}, a^{3}\right\}$ and let $L=$ PRIME. PRIME contains R.
6. Let L be a regular language over $\Sigma=\{a, b\}$. Define $L^{\prime}=\{x \mid$ there exists $y \in \Sigma *$ such that $x y \in L\}$. Is L' regular? Either prove it is or give an example to show it may not always be.
L^{\prime} is regular. To see this, let M be a FA accepting L. Let it have states $Q=\left\{q_{1}, q_{2}, \ldots\right.$, q_{n}. Let F be the set of final states of M . Let M^{\prime} be a FA identical to M except for which states are final states. For each state q in Q for which there exists at least one word z such that $\delta^{*}(\mathrm{q}, \mathrm{z})$ is a final state in M , make q a final state in M^{\prime}.

Let w be in $L\left(M^{\prime}\right)$. Then w reaches a final state of M^{\prime}, which means that w is a word that reaches a state q in M such that there is a word y such that $\delta^{*}(\mathrm{q}, \mathrm{y})$ is in L . This implies that wy $\in \Sigma * \quad$ Therefore, w is in L^{\prime}.

Conversely, let w be in L^{\prime}. Then there is a $y \in \Sigma *$ such that wy is in L. Let q be the state in M that w reaches. Then $\delta^{*}(\mathrm{q}, \mathrm{y})$ is a final state in M , which means that q is a final state in M^{\prime}, and hence w is in $\mathrm{L}\left(\mathrm{M}^{\prime}\right)$. This proves that M^{\prime} accepts L '.

