Chapter 8 Disjoint Sets and the Union/Find Problem

Equivalence Relations

A binary relation R on a set S is a subset of the Cartesian product $S \times S$. If $(a,b) \in R$ we write aRb and say a relates to b. Relations can have many properties. An equivalence relation is a symmetric, reflexive, and transitive binary relation. All equivalence relations are isomorphic to the equality relation, and so equivalence may be thought of like the equality relation.

An equivalence relation creates a partition of the set S into subsets S_1, S_2, \ldots, S_n such that each S_i is the transitive closure of the set of items equivalent to a member of S. Conversely, any partition defines the equivalence R defined by aRb iff a and b are in the same subset.

Examples of equivalence relations:

- Two fractions are equivalent if they reduce to the same irreducible fraction.
- For any positive number n, the relationship $p \sim q$ iff n divides $(p-q)$ is an equivalence relation.
- Two cities are equivalent if it is possible to walk from one to the other without crossing a bridge.
- Two people are in the same clique if they know each other directly or if each of them knows someone who is in the clique. The world is divided into cliques. There is a conjecture that the whole world consists of a single clique in which the separation is at most six edges.
- Two cells in a maze are equivalent if there is a path from one to the other.
- Two stars are equivalent if they lie in the same galaxy.

Dynamic Equivalence Problem

A problem arising in many application areas is the *dynamic equivalence* problem. Given two members of a set S, we need to know whether they are equivalent. One of the earliest instances of this problem arose in the development of the first compiler, the Fortran compiler. Fortran has an `EQUIVALENCE` declaration that tells the compiler that two or more entities share the same logical storage locations. As the compiler processes the source code, it needs to construct the sets of equivalent variables. The problem is dynamic because each `EQUIVALENCE` statement is, in effect, a union operation, combining two or more disjoint and inequivalent sets of variables into a single set. As it processes the code, the compiler also needs to identify which variables are sharing the same locations, which means deciding whether two variables are in the same equivalence class.

If S has n elements, we could create an n by n Boolean array to represent this information, by setting $R[i][j] = \text{True}$ iff $(i,j) \in R$. That solves only half the problem. We also need to change the relationships dynamically so that, for example, we add the relation aRb or remove the relation aRb. Again, the Boolean matrix will provide a fast solution, since we can just turn off the appropriate bits.
Now add the requirement that we should be able to find the set of all elements that are related to a member by obtaining the name of the set to which it belongs and displaying all members of that set. The Boolean matrix no longer provides a fast solution, since we will need to take the transitive closure, at best super-quadratic running time. Alternatively when we add a new relation aRb, we could complete the matrix so that it is transitive, but that turns that operation into an $O(N)$ operation.

A more efficient solution is to represent the equivalence classes as disjoint sets and arbitrarily choose one member of the set as the name of the set. In the dynamic equivalence problem, there are only two operations that must be defined and implemented on this collection of sets: find and union. Given an element x of S, find(x) returns the name of the set containing x. Given the names of two sets x and y in S, union(x, y) forms the set union of x and y. The reason that union is important is that union can add new relations to S: if we want to add a Rb, we form union(find(a), find(b)) if a and b are in different sets to start.

If an algorithm can get to see the entire sequence of union and find operations before it processes any of them, as if it were reading them from a file and storing and analyzing them first, it is called an offline algorithm. If an algorithm does not have this opportunity, and must process each instruction immediately when it sees it, it is called an online algorithm. This would be analogous to interactive input, in which a user types the sequence of instructions at a terminal and the algorithm must respond immediately to each entered instruction. The problem we solve in this chapter is the online, disjoint set union/find problem, which is formalized as follows:

Union/Find Problem: Given N disjoint, singleton sets $\{0\}, \{1\}, \{2\}, \ldots, \{N-1\}$, process a sequence of find() and union() operations on-line, meaning one after the other. The names of the elements are arbitrary; although they are numbers they have no numeric properties, and we could just as easily name them a,b,...,z except that there are just 26 letters but infinitely many integers.

A Naive Solution

Maintain an array S such that $S[i]$ is the name of the set to which element i belongs. find() will be $O(1)$ but union() will be $O(N)$. To form union(a, b) we would find the names of the sets to which a and b belong. Suppose a is in set A and b is in set B. Scan down the array changing all As to Bs. A sequence of $N-1$ unions would take $O(N^2)$ steps. Some gain in performance can be achieved by maintaining the size of each set and when performing a union, always renaming the elements of the smaller set instead of the larger one. For example, if set A has 10 elements and set B has 5 elements, then when union(a, b) is processed, every element of B would be changed to belong to A. This implies that no element can have its set changed more than $\log N$ times, because each time its set is changed, it is part of a set that is at least double the size of the one it was in before the operation. As there are N elements, there are at most $\log N$ doublings that can take place. (There are no operations that undo the unions.) Therefore a sequence of N unions takes at most $O(N \log N)$ time, and a sequence of M finds and $N-1$ unions take $O(M + N \log N)$ time.
An Efficient Solution

In this approach, the find() will take more time and union will be constant, but the total amortized time for N-1 unions and M finds will be slightly more than O(M+N).

Parent Trees

We represent a set by a parent tree, in which the direction of edges is towards the root rather than towards the leaves.

The root of the tree is the name of the set containing all elements in the tree.

Since the name of the containing set is the only information we need to maintain for each node, and the root is the name, we can use an array to represent a tree; If s[] is the array, then s[x] is the index of the parent of x in the tree of which x is a member.

The root s[j] of a tree will have s[j] = -1 to indicate that it has no parent.

A find(x) operation will require traversing the path from x to the root of the tree. If the tree is maintained in an inefficient way, find(x) could be O(N), but a very clever solution makes the running time much less.

The collection of sets {1,2}, {3,4,5}, {6,7}, {8,9}, {10} is represented by the following forest:

```
  1
 /|
/  |
2  3
   |
   4
   |
   5
   |
   6
   |
   7
   |
   8
   |
   9
   |
   10
```

The corresponding array would be

```
-2 1 -3 3 3 -2 6 9 -2 -1
1 2 3 4 5 6 7 8 9 10
```

Smart Union

The naïve union operation will simply take the two trees and make one the child of the root of the other. A smarter solution makes the tree with fewer nodes the child of the larger tree. This is called union-by-size. An alternative is to make the shorter tree the child of the deeper tree, which is called union-by-height. Union-by-height is a slight modification of union-by-size.

I present the union-by-size algorithm. In the case that the two sets are the same size, either can be made the child of the other, so some fixed rule can be used. For example, after the smart union-by-size of the trees with roots 1 and 3, followed by the union of the trees rooted at 6 and 9, the resulting forest and array would look like
because the tree rooted at 3 has 5 nodes (-5) and node 1 now has node 3 as a parent. The union of the 3 tree and the 6 tree results in

It is very trivial to implement either algorithm. The extra work to do this transforms the solution into an extremely efficient one, as we will see soon.
Path Compression

In most abstract data types, a clean line is drawn between accessors and mutators; operations that access data do not change the state of the object. For example, the find operation on search trees and hash tables does not modify those objects. Although find is an accessor, a significant improvement in running time can be achieved by allowing it to change the object. Robert Tarjan realized this when he invented the path compression algorithm for parent trees. When path compression is employed in the find algorithm, all of the nodes that are visited on the path from the node to the root are turned into children of the root. Thus, after the call find(8) on the set above, the forest will look like

It is easy to implement these algorithms. Smart union is very easy. find() with path compression uses a clever bit of recursive coding to avoid the need for a stack. It is a little slower than a non-recursive algorithm because of the function call overhead. The find algorithm would be different if union-by-height were used because it would have to recalculate the height of the tree. That is why it is easier to use union-by-size.

Source Code

class DisjSets{
public:
 DisjSets(int);
 void union(int, int);
 int find(int);
private:
 vector<int> s;
};

/* Construct the disjoint sets object.
* numElements is the initial number of disjoint sets. */
DisjSets::DisjSets(int numElements) : s(numElements)
{
 for(int i = 0; i < s.size(); i++)
 s[i] = -1;
}

/** Union two disjoint sets.
 * For simplicity, we assume root1 and root2 are distinct
 * and represent set names.
 * root1 is the root of set 1.
 * root2 is the root of set 2.
 */
void DisjSets::union(int root1, int root2)
{
 if (root1 != root2) {
 if (s[root2] < s[root1]) {
 // root2 is deeper
 s[root2] += s[root1];
 s[root1] = root2;
 } else {
 // root1 is deeper
 s[root1] += s[root2];
 s[root2] = root1;
 }
 }
}

/**
 * Perform a recursive find with path compression.
 * Error checks omitted again for simplicity.
 * Return the set containing x.
 */
int DisjSets::find(int x)
{
 if(s[x] < 0)
 return x;
 else
 return s[x] = find(s[x]);
}

This version of find() makes a recursive all when x is not the root of its tree (s[x]< 0). In this case, find is called with the parent of x, which is s[x], moving it one step closer to the root of the tree. The path compression takes place in the return statement, which assigns to s[x] the return value of the recursive call, which is the root of the tree to which x belongs. Thus, all nodes of the parent tree on the way from x to the root are made children of the root of that tree.
Analysis

Theorem. The running time of a sequence of M unions and finds using path compression and union by size, in the worst case, on a collection of N sets is $O(M\alpha(N))$, where $\alpha(n)$ is the inverse of Ackermann’s function.

Ackermann’s function is defined by

\[
A(0, n) = n + 1 \\
A(m+1, 0) = A(m, 1) \\
A(m+1, n+1) = A(m, A(m+1, n))
\]

but Weiss uses an alternate definition of it that grows faster:

\[
A(1, n) = 2^n \\
A(m, 1) = A(m-1, 2) \\
A(m, n) = A(m-1, A(m, n-1))
\]

I will stick with the original definition. $\alpha(n)$ is the inverse of $A'(m) = A(m,m)$. I.e., $\alpha(n)$ is the value of m such that $A'(m) = n$. To give an example of how quickly $A(m,n)$ grows:

\[
A(0,n) = n+1 \\
A(1,n) = n+2 \\
A(2,n) = 2n+3 \\
A(3,n) = 2^{n+3} - 3
\]

\[
A(4,n) = 2^{2^{2^{\cdots^{2^{n}}}} - 3}
\]

where the tower of 2's is repeated $n+3$ times.

The following table shows the values of $A(m,n)$ for the first seven values of m and first 6 values of n.

<table>
<thead>
<tr>
<th>$A(m,n)$</th>
<th>$n=0$</th>
<th>$n=1$</th>
<th>$n=2$</th>
<th>$n=3$</th>
<th>$n=4$</th>
<th>$n=5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m=0$</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>$m=1$</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>$m=2$</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>$m=3$</td>
<td>5</td>
<td>13</td>
<td>29</td>
<td>61</td>
<td>125</td>
<td>253</td>
</tr>
<tr>
<td>$m=4$</td>
<td>13</td>
<td>65533</td>
<td>$2^{65536} - 3$</td>
<td>$2^{2^{65536} - 3}$</td>
<td>$A(3,2^{2^{65536} - 3})$</td>
<td>$A(3,A(4,4))$</td>
</tr>
<tr>
<td>$m=5$</td>
<td>65533</td>
<td>$A(4,65533)$</td>
<td>$A(4,A(4,65533))$</td>
<td>$A(4,A(5,2))$</td>
<td>$A(4,A(5,3))$</td>
<td>$A(4,A(5,4))$</td>
</tr>
<tr>
<td>$m=6$</td>
<td>$A(4,65533)$</td>
<td>$A(5,A(4,65533))$</td>
<td>$A(5,A(6,1))$</td>
<td>$A(5,A(6,2))$</td>
<td>$A(5,A(6,3))$</td>
<td>$A(5,A(6,4))$</td>
</tr>
</tbody>
</table>

$A(m,m)$ is the diagonal through this table. You can see that $A(4,4) = A(3,2^{2^{65536} - 3})$ which is orders of magnitude greater than $2^{2^{65536} - 3}$. Since $2^{2^{65536} - 3}$ is larger than any number you will
encounter in this universe, for practical purposes, $\alpha(n) < 4$ for almost all n, and so it is essentially a constant function.

I do not include a proof of the theorem, which is quite lengthy. Because $\alpha(n)$ is essentially a constant, the theorem implies that a sequence of M unions and finds takes $O(M)$ time.

An Application

One simple application of the disjoint set union/find problem is the generation of mazes. Imagine a rectangular M by N grid G in which walls surround all cells, including the perimeter cells. The equivalence relation is that two cells are in the same set if there is a path from one cell to the other in the grid. Initially every cell is in a set by itself, as all cells are surrounded by walls, so there are MN disjoint sets. If a wall is removed between cells $G[i,j]$ and $G[i+1,j]$ then these two cells are now part of the same set. This is a union operation. As walls are removed, the sizes of the sets increase.

One can generate a random maze by choosing a wall to remove randomly. By repeatedly removing a random wall until the entrance cell and the exit cell are connected, a maze is formed with at least one path from the entrance to the exit. By repeating until all cells are in the same set, meaning there is a path from any cell to any other cell, a more challenging maze is generated.