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The Memory Hierarchy

Review of Basics 

Clocks

A clock is a continuously running signal that alternates between two values at a fixed frequency.
A clock cycle is the period of the wave form that the clock generates, i.e., the length of a clock
cycle is the amount of time from the start of a high value to the start of the next high value, so it
is measured in time units. The frequency is the inverse of the period; it is the number of cycles
per unit of time.  Frequency is usually measured in Hertz. One Hertz, abbreviated Hz, equals one
cycle  per  second.  For  example,   100  Hz  means  100  cycles  per  second.  When  it  comes  to
frequencies,  the  prefixes  kilo,  mega,  giga,  and  so  on  are  powers  of  ten,  not  two,  so  one
megaHertz is one million Hertz, or 1,000,000 cycles per second.  The length of a clock cycle
whose frequency is 10 megaHz is 1/107 = 10-7 seconds.  Figure 1 illustrates the clock cycle.

In actuality, the switch between high and low states does not take zero time; there is a small
amount of time needed to make these transitions, as shown in Figure 2, which is a more accurate
depiction of a clock signal's wave form..
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Figure 1: Rising and falling edges of the clock cycle.

Figure 2: More accurate representation of rising and falling clock edges 
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Clocks are used to synchronize changes of state in sequential logic circuits.  A sequential logic
circuit is a combinational circuit with one or more elements that retain state (e.g.., flip-flops – see
below.) The state of a sequential logic circuit can be changed either when the clock line is in a
high state or when the clock line changes state. If the state changes when the clock line changes
state, it is called an edge-triggered circuit. If it changes when the clock line is in a high state, it
is  called  a  level  triggered circuit.  Edge  triggering  is  efficient  because  it  confines  the  state
element's changes to such a small  window of time around an edge transition,  that it can be
considered to be instantaneous.

Storage Elements: Latches and Flip-flops

The  storage  elements  usually  found  in  modern  computers  are  flip-flops and  latches.  The
difference between flip-flops and latches is that, in a clocked latch, the state is changed whenever
the appropriate inputs change and the clock is asserted, whereas in a flip-flop the state is changed
only on a clock edge.

The simplest  storage element  is an unclocked  S-R latch (set-reset latch) built  from 2  NOR
gates.
• Used  as  a  building  block  for  more  complex  memory  elements  such  as  D-latches  and

flip-flops.
• Does not require a clock signal for state update
• The outputs Q and Q' represent the stored state and its complement, respectively.
• If R is asserted, Q will be deasserted (reset), and if S is asserted, Q will be asserted (set).

R

S
Q'

Q

Figure 3 S-R Latch

• If both R and S are de-asserted, the state of the latch is whatever it was before these
inputs are de-asserted.

One problem with a simple S-R latch is that it has an indeterminate state, when both the S and R
input are set. This is overcome in a D-latch, shown in Figure 4. In a D-latch there are 2 inputs: a
data signal D and a clock signal, and 2 outputs: Q, the internal state, and Q', its complement.
The D input is wired directly to the S input, and D complement is wired to the R input.  In
addition,  an external  clock signal C is wired into the latch,  making it  a  clocked latch.  In a
clocked  latch,  the  state  changes  when  the  input  changes  while  the  clock  is  asserted
(level-triggered). 
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When the clock C is asserted, Q and Q' are the values of the input and its complement and the
latch is OPEN.  When the clock is de-asserted, Q and Q' are the values that were stored when it
was last open, and it is CLOSED.

In a  flip-flop, the state changes on a clock edge. A D flip-flop has a data input D and a clock
input C. When the clock edge rises or falls,  the flip-flop outputs D on Q and D' on Q'.  A
flip-flop requires that the D value be valid for a period of time before and after the clock edge.
The minimum amount of time for which it must be valid before the clock edge is called the setup
time, and the minimum amount of time for which it must be valid after the clock edge is called
the hold time.  Figure 5 illustrates this. A flip-flop can use either the rising or the falling clock
edge to trigger the change in the output. Regardless of which it uses, the input signal must be
valid for the sum of the setup hold times. 

The same is true for clocked latches; a clocked latch also has setup and hold time requirements,
and these are defined similarly, except that because a latch is level-triggered and the setup and
hold times are defined in terms of when the clock input is in the high, or enabled, state.

Flip-flops are  used to build  registers.   Because the textbook that  we use in  the course uses
edge-triggered methodology, it always uses flip-flops for state elements, and so will we.
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Figure 4: Clocked D latch

Figure 5: Setup and hold times for a D-flip-flop with a falling-edge
trigger.
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Decoders and Multiplexers

A decoder is a logic circuit that has an n-bit input and 2n outputs. For each input combination
exactly one output line is asserted. A multiplexer is a logic circuit that has n data inputs and log2

n selector inputs. The selector input lines select exactly one of the input lines, which is output. If
multiplexer were built purely out of 1-input and 2-input logic gates, the number  needed would
increase exponentially as a function of the number of selector inputs. There are more efficient
methods of building multiplexers, but in general, they cannot be made too large because of fan-in
and pin limitations.
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Figure 6: Setup and hold times for a clocked D-latch (from notes by Puneet 
Gupta)

Figure 7: A 1-of-8 decoder
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Figure 9: Block diagram of a synchronous SRAM

Figure 8: A 4-to-1 multiplexer
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Registers

A register is an array of flip-flops.

Register Files

A register file is a set of registers that can be indexed by a register number, either for reading or
for writing. To read a register, the register number is input to the register file, and the read signal
is activated. The register number is used as the select switch in an output side multiplexer. The
multiplexer  is  used  to  select  the  out  line  of  the  chosen  register.  Because  many  machine
instructions have two register operands, register files are often designed to accept two register
numbers and have two output lines. 

Register files are limited in how many registers they can contain because multiplexers become
impractical as they get large.  

Writing to a register is more complex. The inputs include 

• the register number, 

• the data to write, and 

• a write signal.  

The register number is the input to a decoder. Exactly one output of the line of the decoder is
asserted,  the one corresponding to the register number given as input.  The C input to every
register is formed from the AND of the write signal and the decoder output. Exactly one register
will have its C line asserted, and the data to write will be placed on the D line of every register.
There are timing constraints of course -- the data and signals have to be asserted long enough for
the write to take place properly.

RAM

RAM is short for random access memory. There are two basic types of RAM in common use
today,   static and  dynamic random  access  memory,  abbreviated  SRAM and  DRAM
respectively.  Both are physically organized as an array of memory cells. Both use a decoder
whose  input  is  a  set  of  address  lines  to  select  one  or  more  memory  cells  for  the  memory
operation.   Both can store data as long as power is applied. However, even when powered,  a
DRAM loses data  if it is not periodically refreshed,  whereas in a SRAM the data can be stored
without any kind of extra processing or refreshing. As a result, SRAMs are less complex than
DRAMs, and because of this we study them before DRAMs, but only after  we have defined how
the performance of a memory system in general will be measured. 

The performance of a memory is measured in two ways: by its access time and cycle time. The
access time is the time required to select a word and read it. The cycle time is the time required
to complete a write operation.  These will be explained in more detail below.

SRAM 

SRAM is an acronym for  Static Random Access Memory.  The basic architecture of SRAM
includes  one  or  more  rectangular  arrays  of  memory  cells  with  support  circuitry  to  decode
addresses and implement the required read and write operations. Additional support circuitry for
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special features such as burst operation or pipelined reads  may be present on the memory chip.
Figure 9 contains a block diagram of a SRAM.  

The inputs to SRAM include:
• address line (log of height bits) also called a word line
• chip select signal 
• output enable signal
• write enable signal
• data input signal (w bits, where w = width of the SRAM) 

The output is an output line of w bits, where w is the width of the SRAM.

The individual memory cells in an SRAM are built out of circuits that resemble D-flip-flops. A
single  cell  typically  requires  from  four  to  eight  transistors,  depending  upon  the  design
(four-transistor cells are not as stable as eight-transistor cells.)  The core of the cell is a pair of
inverting gates, which store the state of the cell.  Figure 10 illustrates how the cross-coupled
inverting gates store state. The figure shows that, in addition to the inverting gates, the cell uses a
pair of transistors to connect it to the  word and  bit lines of the SRAM.  The word line is the
address line for that particular cell. The bit line is the line for the particular bit of that address.
Conceptually the word lines are the rows of the SRAM, and the bit lines are the columns. Each
unique word address corresponds to a single row.

Figure 11 is a circuit diagram for a six-transistor memory cell. 

SRAMs may be synchronous or  asynchronous. Asynchronous SRAMs respond to changes at
the device's address pins by generating a  signal that drives the internal circuitry to perform a
read  or  write  as  requested.  They  are  not  clocked,  and   are  limited  in  their  performance.
Synchronous SRAMs (SSRAMs) are faster. They  are driven by one or more external clock
signals that control  the SRAM operations, which allows them to synchronize with the fastest
processors.  Asynchronous SRAMs come in two flavors,  fast  and slow.  The fast  variety  has
access  times  under  25  ns,  whereas  the  slow ones  have  access  times  greater  than  45 ns.  In
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Figure 10: An SRAM cell represented by a pair of
inverting gates.
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contrast, SSRAMs can have access times under 1 ns. As of this writing, there are many different
types of SSRAM, including:

• Single Data Rate SRAM
• Pipelined vs. Flowthrough SRAMs
• Burst SRAMs
• Network SRAMs - NoBL™/ZBT™ SRAMs

• Double Data Rate SRAMs
– Standard DDR SRAMs
– QDR™ SRAMs

• NetRAM™

Storage capacities for a single SRAM chip have reached  72 Mbits.  Synchronous SRAM tends
to have greater storage capacity than asynchronous SRAM.  SRAM chips are specified by their
height h and width w, e.g.,  a 256K x 1 SRAM has height 256K and width 1.   This means it has
256K addresses, each 1 bit wide. Common shapes are x1, x4, x8, x16, x18, and x36. Figure 12
shows a 4 by 2 SRAM module, with a single  2-to-4 decoder.

Decoding is usually two-dimensional for better performance. For example, if the height is 1M
(220), a single decoder would be 20 x 220 and require 220 20-input AND-gates. If instead, we break
the address into a 10-bit upper and a 10-bit lower part, then we can use two 10 x 1024 decoders,
requiring only 2048 AND-gates instead of more than one million.

Another design for smaller memories uses a combination of a decoder and multiplexers. Figure
14 illustrates this idea. The high order bits are input to a decoder, which selects a row that is
enabled in  all  of the SRAM modules.  The low-order  bits  are  the input  signal to  a series of
multiplexers, each of which selects a single bit from each array. 
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Figure 11: A six-transistor SRAM cell.
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Figure 12: A 4 by 2 SRAM module

It is impractical to use a multiplexer exclusively to select the output of an SRAM cell. It would
be on the order of 64K-to-1 or worse. The technology to build SRAMs uses a combination of
decoders and multiplexers, and is based on tri-state buffers.  

Tri-state buffers can be connected  to form an efficient multiplexer.  A tri-state buffer is a buffer
with a data input, an output-enable input, and a single output. If the output-enable is asserted, the
value of the data input is placed on the output line. If the output-enable is de-asserted, the output
line is in a high impedance state. This means, in essence, that the output line is neither low nor
high voltage, but is neutral voltage, and that another tri-state buffer can put a value on the line.

In  practice  many  SRAMs  are  built  with  three-state  buffers  incorporated  into  the  flip-flops
themselves and these share an output line.
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A 4M by 8 SRAM can be organized into 4096 rows with 1024 x 8 bits per row.  Therefore, eight
4K x 1024 SRAM chips can be used as shown in  Figure 14.

Figure 14: Eight 4096 by 1024 SRAM chips forming a 4MB memory
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Figure 13: Four tri-state buffers forming a 4 to 1 multiplexor
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DRAM 

A DRAM (Dynamic Random Access Memory) stores a cell’s state in a capacitor rather than in a
set of inverting gates, and it changes the state with a transistor. See Figure 15. This uses less than
one-fourth to one-sixth of the space used by a SRAM with equal capacity, since each cell uses a
single transistor and a single capacitor. However, because the capacitor cannot hold the state
indefinitely, it  must be refreshed periodically, hence the term "dynamic".  Refreshing can be

done by a separate controller, and can use 1% to 2% of the active memory cycles.

To write data into a DRAM cell, a voltage signal is placed on the data line and a signal is applied
to the address line.  This switches on the transistor, which allows a high voltage to charge the
capacitor. If there is a 0 signal, the capacitor receives no charge. To read the cell the address line
is  activated,  and  any  charge  in  the  capacitor  is  transferred  onto  the  data  line.   This  is  a
destructive read.  Therefore, the data read out must be amplified and written back to the cell.
This rewrite is often combined with the periodic refresh cycle that is necessary in DRAM chips.

DRAM cells store a very small charge, saving on power consumption. The read out requires that
the data line be charged to a voltage about halfway between the voltages representing 0 and 1.
The small change in voltage is detected on the data line.

DRAMs use a two level decoder. The address is split into a row and a column, and the row is
sent followed by the column. The row number is usually formed from  the high order bits, and
the column, from the low order bits.  The address path is only wide enough for one of these.

The row address is placed on the address line and the Row Access Strobe (RAS) is sent to the
DRAM to indicate that the address is a row address. The row decoder decodes it and a single row
is activated. All of the bits in that row are sent to the column latches. The column address is
placed on the address line and the  Column Access Strobe (CAS) is activated. The bits of the
individual columns are chosen by the output side multiplexor and placed on the Data Out line. 
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Figure 15: A DRAM cell
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The two-level access and the more complex circuitry make DRAMs about 5 to 10 times slower
than SRAMs, although their cost is much less. DRAMs are used for main memories; SRAMs for
caches1.

Synchronous DRAM

DRAM was originally an asynchronous type of RAM.  Synchronous DRAM (SDRAM), like
synchronous SRAM, uses an external clock signal to respond to its input signals. This makes it
possible to synchronize with the bus and therefore,  to improve its  performance.  Basically,  it
allows for an internal pipelined type of operation: after an initial setup, a sequence of addresses
can be accessed partly in parallel.

In asynchronous DRAM, if a sequence of consecutive rows needs to be transferred to or from the
memory,  each address is decoded separately, one after the other.  In SDRAM, a single address
and a burst length are supplied to the memory. Additional circuitry within the SDRAM allows
one row to  be latched while  the next  row is  accessed.  The external  clock signal  is  used  to
coordinate the transfer of successive rows. This obviates the need to decode multiple addresses,
speeding up the transfer. 

Memory Hierachy

Main Objectives of a Memory Hierarchy: 
1. To minimize execution time of executing programs
2. To maximize the throughput of the computer
3. To minimize response time

subject to the constraint that high-speed memory is limited in size.

1 SRAM is also used in devices such as cellphones and cameras as primary memory.
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Figure 16: DRAM module
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Two Principles of Locality

Temporal Locality:  If an item is referenced, it will tend to be referenced again in the near future.

Spatial  Locality:   If  an item is  referenced,  items whose addresses  are  close will  tend to be
referenced soon.

Empirical and theoretical justification:
• programs tend to stay in loops,  so instructions and their  data are repeatedly accessed

(temporal)
• instructions tend to be executed sequentially (spatial)
• data tends to be accessed sequentially, as in array accesses (spatial)

The Memory Hierarchy is based on the idea that the faster the memory,  the more costly to build
and therefore the smaller in capacity, and conversely, the larger the memory, the slower to access
and less costly. In 2014, the memory hierarchy consists of registers at the very top, followed by
up to three levels of cache, then primary memory (built out of DRAM), then nonvolatile memory
such as a magnetic disk or solid-state (semiconductor) disk.

Analogy: books in the library.

Technologies used to build parts of the memory hierarchy:

Technology Access Time 2012 $ per Gbyte

SRAM semiconductor memory 0.5 - 2.5  ns $500 - $1000

DRAM semiconductor memory 50 -70 ns $10 - $20

Flash semiconductor memory 5000 – 50000 ns $0.75 - $1.00

Magnetic Disk 5-20 million ns $0.05 –  $0.10

Memory Hierarchy Rules:

Regardless of how many levels are in the hierarchy, data is copied between adjacent levels of the
hierarchy only.  We focus on just two levels at a time.

A block is the smallest unit of information that can be present in a two-level hierarchy (called a
2-hierarchy).  In  other  words,  regardless  of  which  two  levels  are  the  subject,  the  smallest
transferable unit of the two levels is called a block.

A  hit  occurs  when  data  requested  by  the  processor  is  present  in  the  upper  level  of  this
2-hierarchy. Otherwise it is a miss.

The hit ratio is the fraction of memory accesses resulting in a hit.

Hit time is the time to access the upper level, including the time to decide if the access is a hit or
a miss. (Time to look through books on the desk)

The  miss  penalty is  the  time  required  to  replace  a  block  in  the  upper  level  with  the
corresponding block in the lower level, plus the time to deliver this block to the processor. (time
to search library shelves, find book, and bring it to the desk.)
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CPU
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access time 
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Performance is affected by the hit ratio, the time that it takes to access the upper level, and the
miss penalty. The miss penalty dominates these times.

A trade-off to keep in mind:  as the size of the upper level  increases,  although the hit  ratio
increases, the hit time also increases.
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Figure 17. A direct-mapped cache with 8 blocks for a lower level with 32 blocks. (from
Computer Organization and Design, 4th edition. Patterson and Hennessey) 
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CACHE BASICS

Cache: a safe place to hide things.

Cache has a specific and a general meaning. 

Cache can mean the specific level of the hierarchy between the CPU and main memory.

Cache can also mean more generally,  any store interposed between two levels of a memory
hierarchy to take advantage of locality of access.

A Simple Cache

A  direct mapped cache is one in which each word in memory is mapped to a unique cache
location.  

(There will be many words  that map to the same location, but no word maps to two different
locations. Thus, this is a many-to-one mapping.)

Simplest direct mapping is

cache_address =  block_address  % number_of_cache_blocks_in_cache

Example

Suppose the cache has 8 blocks, each containing one word (assume that words are the
smallest addressable memory units.)

Then the low-order 3 bits of the block address are the index into the cache, because
there are 8=23 blocks.  All memory words with the same low order 3 bits in their map to
the same cache block: 

0, 8, 16, 24,  0

1, 9, 17, 25,  1

2, 10,18,26,  2

…

7, 15, 23, 31,  7

A tag is attached to each cache block – the tag contains the upper portion of the block address,
i.e., the portion that was not used to choose the cache location for the block.

tag   =  block_address / number_of_cache_blocks_in_cache

A valid bit is needed to tell whether cache data is meaningful or not, since the cache block might
not have actual data in it yet.

Each cache entry contains:
• a valid bit
• tag  bits 
• data bits

15
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Example

(This uses  Figure 17  to illustrate  how the cache is used and the logic needed to determine
whether a hit occurred and how to retrieve data in case of a hit.)

Assume  the  CPU requests  words  at  addresses  10110,  11010,  10110,  11010,  10000,  00011,
10000, 10010,  and 01010 and that the cache described above is used. It has eight one-word
blocks and word w is placed in cache block  w % 8.

The sequence of accesses, together with whether they hit or miss and their locations in the cache
are as follows:

10110 => 110  (miss) new block
10010 => 010  (miss) new block
10110 => 110  (hit) loaded in step 1
11010 => 010  (miss) replaced in step 3
10000 => 000  (miss) new block
00011 => 011  (miss) new block
10000 => 000  (hit) loaded in step 5
00011 => 011  (hit) loaded in step 6
10000 => 000  (hit) loaded in step 5
10010 => 010  (miss) block replaced in step 4
01010 => 010  (miss) block replaced in step 10

These last two misses result in replacement because there already was a different word in the
cache block to which the word was mapped.

Direct mapping takes advantage of temporal locality to a limited extent:  when a reference is
made  to  an  address  r,  r  replaces  some block already in  the  same cache  location.  Temporal
locality increases the probability that r will be referenced again soon. Spatial locality weighs in
favor of r's being accessed over some distant location that might replace it.

Calculating Cache Size

Suppose a cache has 2n words, where 1 word = 4 bytes. Suppose memory addresses are 32 bits.

1. The low order 2 bits of an address specify the byte offset within a word.

2. The next n bits specify the cache index.

3. Therefore, the tag field must be 32-(n+2) bits long, because there are this many bits required
to specify the unique memory word.

4. The data field is 1 word = 32 bits long

5. The valid bit = 1 bit

6. Therefore, we need (32 +(32 - n - 2) + 1) = 63 – n bits per cache block.

7. Since there are 2n cache blocks, the total bits in the cache is 2n * (63 - n)

16
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Spatial Locality and Multiword Cache Blocks

To take advantage of spatial locality, one should store adjacent memory words together in the
same cache  block.  This  takes  advantage  of  the  high  likelihood  that  adjacent  words  will  be
referenced in the near future.  This concept leads to the idea of multi-word cache blocks.

A  multi-word cache block is is a cache block that consists of more than a single word. For
example, it might be two words, or four, or eight words long. The number of words is usually a
power of two.

Mapping an address to a multiword cache block

When a cache has multi-word blocks, the memory address is decomposed into 4 fields:

tag, block address, block offset, byte offset

The tag is used in the same way as in a cache with single word cache blocks.

The block address is the address of the block. It is  computed in one of two ways:

byte address/ number of bytes per block   or

word address / number of words per block

The block address is used in the same way as before, to access the index of the block in the
cache, i.e., the row of the cache containing that block, so the row of the cache is obtained by
using the block address % number of blocks in the cache.

The block offset is the position of the word relative to the block. It can also be computed in one
of two ways:

(byte address % number of bytes per block)/ bytes per word, or

word address % number of words per block

The block offset is used by the multiplexer when selecting the input lines whose data should be
put on the output line.

Example

Suppose a cache has 128 blocks and a block size of 4 words = 16 bytes.  Suppose we want to
map  a  memory  address  into  the  cache  whose  byte  address  is  3400.  Its  block  address   is
floor(3400/16)  =  212,  so  the  cache  block  has  index  212%128   =  84.   The  block  offset  is
(3400%16)/4 = 8/4=2 and the byte offset  is 3400 % 4 = 0, i.e., The byte is in the second word in
the cache block, in position 0 of that word. 

Figure 18 is a schematic diagram of a cache that uses direct mapping with 4-word blocks. The
cache has 4096 blocks, for a total of 16*4K bytes, or 64 KB.
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Figure 18: Direct mapped cache with 4-word blocks

Performance Issues with Multiword Blocks

Using multiword cache blocks

• reduces the number of misses and the number of data transfers, and

• reduces cache size, because adjacent words share the same index and tag fields

when the block size is not “too large” as explained below. A good way to see the drop in miss
rate is to imagine what happens as a program executes instructions in consecutive words , e.g. at
byte addresses  0, 4, 8,12,16,20, 24,….  If 4-word blocks are used, the reference to 0 loads 0, 4,
8, and 12. Then the reference to 16 loads 16, 20, 24, and 28, and so on. 

As the number of words per block increases, for a fixed size cache,

1. the number of tag bits decreases, 

2. the miss rate decreases because of spatial locality

3. the number of cache blocks in the cache decreases, increasing competition for the blocks, and
increasing the rate at which blocks are replaced, and increasing the miss rate,

4. the  cost  of  a  miss  increases,  because  although  memory  latency  does  not  change,  block
transfer time increases due to increased block size.
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These factors are contradictory.  Studies show that miss rate is minimized when block size is
around 16 to 64 bytes; larger block sizes have the opposite effect.

Handling Cache Misses

What modifications must be made to the processor to handle using a cache?

Handling hits is easy.

Handling misses is harder. There are different kinds of misses:

• instruction miss: the instruction is not in cache

• source data miss: one of the operands is not in the cache

• target data miss: one of the locations to write to is not in the cache

Regardless  of the kind of miss,  the general  approach is  to  stall  the CPU while  the data  or
instruction is loaded into cache, and then repeat the cycle that caused the miss. Specifically, the
actions include: freezing register contents, fetching missed data or instruction, and restarting at
the cycle that caused the miss.

A separate controller handles fetching the data into the cache from memory.

Unlike a pipeline stall, the entire machine is frozen in a cache-miss stall, waiting for the cache to
be ready.

Handling Instruction Misses

If the instruction to be loaded into the Instruction register is not in the cache, then the cache must
be loaded and the instruction restarted. Since the program counter (PC) is incremented (by 4)
before the miss is discovered, the first step is to decrement the PC.
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Figure 19: Miss rate versus block size
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1. Send the PC causing the miss (which is the current PC - 4) to the memory.

2. Instruct memory to perform the read and wait for it to complete read.

3. Write the instruction into the cache entry, putting the read data into the data portion, the
upper bits of the address into the tag field, and setting the valid bit to true.

4. Restart the instruction at the first step, which re-fetches the instruction.

Handling Data Misses

This is almost the same as an instruction miss. If an operand is missed,

1. Send the missed address to the memory.

2. Instruct the memory to perform the read and wait for it to complete the read.

3. Write the cache entry the same way as above.

4. Continue the instruction from the point at which the miss occurred.

An alternative to this simple approach is to use a stall-on-use policy: the CPU does not stall on a
data miss until the data is actually needed as an operand; usually this occurs very soon thereafter
and so there is not much benefit.

Handling Cache Writes

When the processor would ordinarily need to write data to memory, in the presence of a cache,
the data is written instead to the cache. If the block to which the processor is trying to write is
already in the cache, it is called a write hit. If the block is not in the cache, it is a write miss.

Write Miss in a Single-Word Block Cache

If the block into which a data word must be written is not in the cache, there is no reason to read
it first from memory into the cache, since it will be overwritten by the new value, so a write miss
is handled by simply writing the data into the cache and updating the tag and valid bits.

Summarizing, the steps are:

1. Index the cache using the index bits of the address.

2. Write the tag bits of the address into the tag, write the data word into the data bits, and set the
valid bit.

3. Write the data word to main memory using the entire address (write-through).

The harder problem is when the cache has multi-word blocks. Then the block does have to be
fetched first, because otherwise the block will become corrupted -- the word to be written is not a
part of the block presently in the cache, but of some other block that is not in the cache. This will
be explained below.

In either case, writes are more complex than reads, as we now describe. 
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After a write to the cache, the cache and main memory have different values for the same block.
This is called cache inconsistency.  There are two strategies for preventing cache inconsistency
from causing data corruption: write-through and write-back. 

A write-through strategy is one in which data is always written to memory and the cache at the
same time.

A write-back strategy is one in which data is written to the cache block only, and the modified
cache block is written to memory only when it is replaced in the cache.

The write-through strategy would not improve performance for writes over a system without a
cache because it incurs the cost of a memory access for each write.  

Example.  

If 13% of instructions are writes, and 10 cycles are needed to process a write to main memory,
and the CPI2 without cache misses is 1.2, then the effective CPI would be 1.2 + 10*0.13 = 1.2 +
1.3 = 2.5,  a halving of the speed.  

To reduce this cost, a write buffer is used.   Data is written to a write buffer without having to
wait for memory to access the location and transfer the data. The data is transferred while the
processor continues.

If the processor tries to write to the buffer and the buffer is full, the processor is stalled.  Stalls
can occur due to  write bursts from the processor, even if the overall rate of writes is smaller
than that which the memory can handle.  Usually, multiple buffers are used to reduce the chance
of a stall. In the DECStation 3100, a 4-word buffer is used.

Combined Data and Instruction Caches Versus Separate Caches

To compute the effective cache miss rate for a split cache, you need to know the fraction of
cache accesses to the instruction and data caches. If  0 <= p <= 1 is the fraction of accesses to
the instruction cache, and the miss rate at the instruction cache is mI and the miss rate at the data
cache is mD, then the effective miss rate m is 

m = p*mI   + (1-p)*mD

The advantages of separate instruction and data caches are:

• Twice  the  cache  bandwidth,  since  instruction  and  data  caches  can  be  checked
simultaneously

• Simplified architecture for instruction cache, since it is read-only.

Disadvantages are:

• Lower hit rate than combined cache

2  Average clock cycles per instruction in a particular program.
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Example.

The program gcc was run on the DECStation 3100 with its separate caches, and a machine with
a combined cache of the same size as the total, 128 KB. The results:

Split cache effective miss rate: 5.4%

Combined cache miss rate: 4.8%

The miss rate for the combined cache is only slightly better, not enough to outweigh the doubled
bandwidth of the split cache.

Handling Writes in Multi-word Blocks

Writes are handled differently in multi-word blocks. The processor can only write one word at a
time. Suppose that cache holds 4-word blocks, and that memory addresses X and Y both map to
cache address C and that at the current time, cache block C contains the memory block starting at
Y. Now suppose that the processor issues a write request to X. If it were to write to block C, then
C would contain one word of X and 3 words of Y.

Example

Suppose a cache has 256 blocks, each with 4 words, for a total of 1024 words.  Suppose that the
first block of the cache is filled, i.e., line 0 has 4 words from word addresses 0, 1, 2, and 3 in
memory. The processor now issues a write to word 1024 in memory. The block to which this
word belongs is block 1024/4 = 256. Block 256 is supposed to be placed into row 256 % 256 =
0.  This is therefore a write miss to word 0 of block 256. The entire block has to be replaced
otherwise we would write  word 1024 into the the block whose other  words would be from
locations 1, 2, and 3.

To solve this problem when using a write-through cache, the processor writes the data to the
cache block simultaneously as the tag field is checked. If tags match, the write access was a hit
and the write is written through to memory. If not, it is a write miss. In this case, the block
containing X is fetched from memory into the cache and the word is rewritten into the cache (and
written through to memory). This would not work with a write-back cache, because the write to
X could replace a word that was not yet written back to memory in the block starting at Y.

Notice that when blocks contain multiple words, a write miss requires reading from memory,
whereas when blocks contain one word, a write miss does not. This is independent of whether
write-through or write-back is used.

A Real Multiword Cache from Integrated Device Technology, 1994. (optional)

Below is an illustration of the design of a 256KB direct-mapped cache with 32 byte blocks. On
this machine, words are 64-bits, or 8 bytes. Therefore, each cache block consists of 4 eight-byte
words.  The memory is connected to the CPU and the cache data RAM via a 64 bit bidirectional
bus. The CPU uses a 32 bit address line to address memory. Since the cache has 256KB in 32
byte blocks, it has 8K = 213 blocks, hence the 13-bit index (called a set address in the diagram.)
Since there are 32 bytes per block, the byte offset requires 5 bits.  Since the memory bandwidth
is 64 bits = 8 bytes, which is ¼ of a cache block, a cache block access requires a 13 bit block
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address plus 2 bits to select which 8 byte word of the block is requested. Therefore, there is a
15-bit path to the cache data RAM.

Notice that the output of the tag RAM is a 1-bit MATCH, which is sent to the memory control.

(from Computer Architecture and Organization, J.P. Hayes, McGraw-Hill, 1998)

Designing Memory to Support Caches

The goal is to reduce the miss penalty. Memory access time is 

number of clock cycles (S) to send the address +

number of clock cycles (A) to access the DRAM +

number of clock cycles (T) to transfer a word of data
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Example.  

If S = 1, A = 15, T = 1, then the miss penalty for a 4-word cache block would be

1 + 4*15 + 4*1 = 65 clock cycles.

Since there are 16 bytes in a 4-word block, this is an average of 16/65 = 0.25 bytes per clock
cycle.

Memory Organizations

One word wide memory.  Sequentially accessed words. 

Multi-word wide memory with a multi-word wide bus and cache.

Words are accessed and transferred in parallel, reducing access and transfer times by a factor
equal to the width. For example, with S, A, and T as above, the miss penalty for a 4-word block
with a 2-word wide bus and memory is

1 +  2*15  + 2*1  = 33 clocks    (bandwidth = 16/33 = 0.48 bytes per clock)

and for a 4-word wide bus and memory would be

1  +   15   + 1       =  17 clocks    (bandwidth = 16/17  = 0.94 bytes/clock)

The dominant costs are the expense of the bus and CPU control logic and  the increased time to
multiplex the cache.

Interleaved  multi-word wide memory with a one-word wide bus.

Memory banks are  interleaved.  A single  access  can access  all  banks,  but  transfers  must be
sequential.  An address and read or write request can be sent to all banks simultaneously, and
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each accessed simultaneously, but the transfers take place one at a time.  For example, the miss
penalty for a four-word block would be

1  +   15   + 4 *1       =  20 clocks    (bandwidth = 16/20  = 0.80  bytes/clock)

Measuring and Improving Cache Performance

Measuring Cache Performance

The first step in improving cache performance is to know exactly what it is you are trying to
improve. Another way to put this is that you need to decide on a measure by which you can
compare  the  performance  of  two  caches  (or  perhaps  a  cache  and  the  supposedly  improved
version of this cache.)  Ultimately, the gauge of a cache’s performance is the amount of time by
which it improves the running time of programs executed in the CPU.  

For any single program, we can measure this performance by comparing the running time of the
program on a CPU with this cache against the running time of the same program on the same
CPU but with a “perfect” cache. A perfect cache would always have the referenced block; the
processor would never have to access main memory. The running time with a perfect cache
would be the total time of the instructions executed in the CPU, without any added cycles due to
memory stalls. To make this precise,

Actual CPU Time = (CPU cycles + memory_stall_cycles)* amount_of_time_in_one_cycle

We can assume that cache misses dominate the cost of stalls for simplicity. Then

Memory_stall_cycles = read_stall_cycles + write_stall_cycles

where 

read_stall_cycles = ( reads per program) * read miss rate  * read miss penalty
write_stall_cycles = (writes per program) * write miss rate * write miss penalty + write 

buffer stalls 

The latter formula is true for a write-through scheme with multiword blocks. In a write-back
scheme, because write stalls can still incur a write cost at block replacement time, there is still a
penalty due to writes.

Usually the write  miss  penalty is  about  the same as a  read miss  penalty in  a  write-through
scheme, so they can be combined:

Memory stall cycles = (total memory accesses) * miss rate * miss penalty

or, equivalently,

Memory stall cycles = total instructions * (misses per instruction) * miss penalty

Example

The gcc (gnu C compiler) was subjected to experiments and it was determined that it had, on a
particular architecture, an instruction miss rate of 2% and a data miss rate of 4%, and that 36% of
all instructions were either loads or stores. If the CPI of a machine with a perfect cache is 2.0 and
the miss penalty is 40 clock cycles, how much faster is the  machine with the perfect cache? 
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Solution

Since 36% of instructions make a data access, the memory stall cycles due to data misses is

data miss cycles = I * 0.36 * 0.04 * 40 clock cycles  = 0.576 I clock cycles

and those due to instruction misses is

instruction miss cycles = I * 0.02 * 40 clock cycles = 0.80 I clock cycles

so that the total cycles required for memory stalls is 

0.80 + 0.576 = 1.376 I

The CPI with stalls is 2.0 + 1.376 = 3.376, and the ratio 

(CPU Time with imperfect cache)/(CPU Time with perfect cache)

= ( I * CPI with imperfect cache ) / (I * CPI perfect cache )

= 3.376/ 2.0 = 1.688

so that the perfect cache is 1.688 times faster. 

Improvements to the processor may speed up performance in general, but the impact of memory
stalls will reduce the effective speedup. To illustrate this, we can consider two different ways to
speed up running time without changing the cache or its design.

Effects of changes to architecture on performance

1. Increasing Processor Speed

Suppose that we speed up the processor without changing the system clock, by a factor of 2, so
that the CPI using a perfect cache is 1.0 instead of 2.0 (i.e., it uses half the time as before.) Then
the CPI with stalls is

CPIstalls = 1.0 + 1.376 = 2.376

so

CPIstalls / CPIperfect = 2.376/1.0  = 2.376

as opposed to 1.69 from above. In other words, if this cache were used on a faster processor, it
would have an even greater negative impact on overall performance than if it were used on a
slower one. 

2. Increasing Clock Rate

Suppose that we double the clock speed without changing the processor speed. A change in the
clock speed will not affect the response time of memory; the miss penalty will take the same
time  but  will  take  twice  as  many  cycles,  in  this  case  80  cycles  (since  it  was  40  before.)
Therefore, the CPI with stalls is derived as follows:

instruction miss rate =  I * 0.02 * 80 clock cycles = 1.6 I

data miss rate = I * 0.36 * 0.04 * 80 clock cycles = 1.152 I

miss cycles per instruction =  1.6 + 1.152 = 2.752 I
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CPIstalls = 2.0 + 2.752 = 4.752

and 

CPIstalls / CPIperfect = 4.752/2.0  = 2.376

If we compare the performance before and after the change, we have to take into account the fact
that  a clock cycle  is  smaller  after  the change,  so the units  of  comparison are different.  We
doubled  the  clock  speed without  speeding  up the  processor.  Therefore,  the  effective  CPI  is
double what it was before, since each instruction uses twice as many cycles as it did before we
doubled the clock speed (i.e., each clock is half the time it was before, so we have to double the
CPI to compare it to the CPI with stalls after the change.)  If the effective CPI with stalls before
was 3.376, then after the change, with this smaller clock cycle, it is 6.752.  If we compare the
performance before and after the change, we get

CPIstalls before change / CPIstalls after change  = 6.752 / 4.752  =  1.42

In other words, although we doubled the clock speed, the actual speed-up is only 1.42, or 42%
faster.

These two examples show that there is a limit to the amount of speedup obtained by changing the
processor alone.  The key to real gain is to reduce the combined cost of high miss rates and miss
penalties.

Average   Memory   Access Time (AMAT)  

AMAT = hit time + miss rate * miss penalty

Example

A processor has a 1 ns clock cycle, a miss penalty of 20 clocks, and a miss rate of 0.05 (per
instruction.) Cache access time is 1 clock cycle. Assuming read and write penalties are the same,

AMAT = hit time + miss rate * miss penalty

             = 1 clock cycle + (0.05 * 20) clock cycles

             = 2 clock cycles = 2 ns.

Reducing Miss Rate by Flexible Placement of Blocks

In direct mapped caches, each block can go in exactly one place in the cache.  By allowing 
blocks to be placed into more than one location, we can improve performance.

Set associativity

In an  n-way associative cache, there are n different cache blocks into which a memory block
may be placed. The “n” is the number of equivalent choices. If some of these blocks are free at
the  time  the  block  is  stored  into  the  cache,  one  of  them is  chosen  using  some  placement
strategy.  If none are free, a replacement strategy is used to decide which of the n blocks to
replace.  The  most  common  replacement  strategies  are  random  replacement  and
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least-recently-used (LRU) replacement.   Each memory block maps to a unique set, but not a
unique element within the set.

Notice from the illustrations that as n increases, the number of rows, or sets, decreases, and
that, if the cache has 2k total blocks, it has 2k /n sets.

Direct-mapped caches are just 1-way set-associative caches – there is just one place to put the
block. A direct-mapped cache with 2k blocks has 2k sets.  

Fully associative caches are the special case  in which the entire cache is a single set and all
cache blocks are in this one set. The set has 2k  blocks and n = 2k.

Set-associative caches are caches in which 1 < n < 2k. for a cache with capacity 2k. They have a
number of sets greater than 1 and less than the number of cache blocks. The mapping for a
set-associative cache is

set index = block number % (number of sets in the cache)

Figure  21  illustrates  how  an  8-block  cache  can  be  configured  as  direct-mapped,  2-way
associative, 4-way associative, or fully associative.

The schematic diagram for an n-way set associative cache with n = 4 is illustrated in Figure 22.
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In this cache, the index bits select a set. If the memory block is in the set, it is in exactly one
block of the set. The tag bits are input to each tag in the row. If the block is present and the data
is valid, exactly one of the AND-gates will output a 1, and the set of outputs of the AND gates is
used as the input to a multiplexor with a decoded select input,  to select which column will be
placed on the data out line of the cache. If no block matches, the HIT output is false and the data
out line will be invalid.  The multiplexor can be eliminated if the comparator outputs an Output
enable signal that can drive the data from the matching comparator onto the output lines.

Examples 

Assume we have three caches with 4 one-word blocks. One is direct-mapped, the other, 2-way
associative, and the last, fully associative. Assume the following sequence of block addresses is
requested by the processor:  0, 8, 0, 6, 8.

Direct-Mapped Cache

The mapping of block addresses to cache blocks is given by 

    set index = block number % 4
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Figure 22: Four -way set associative cache circuitry
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Block Address Cache Block

0 (0 % 4) = 0

6 (6 % 4) = 2

8 (8 % 4) = 0

Hence the sequence 0, 8, 0, 6, 8 maps to 0, 0, 0, 2, 0. The chart below shows the cache after each
reference.  Bold indicates the newly placed block. Each reference caused a miss, five misses in
all.

Block
Address

Hit or Miss Contents of Cache Block After Reference

0 1 2 3

0 miss Mem[0]

8 miss Mem[8]

0 miss Mem[0]

6 miss Mem[0] Mem[6]

8 miss Mem[8] Mem[6]

Two-way associative using LRU

There are just two sets, so the mapping is     set index = block number % 2

Block Address Cache Set

0 (0 % 2) = 0

6 (6 % 2) = 0

8 (8 % 2) = 0

The cache contents  after  each reference,  using LRU for replacement,  and using the smallest
numbered available block when more than one is free. There are four misses.

Block
Address

Hit or Miss Contents of Cache Set After Reference

Set 0 Set 0 Set 1 Set 1

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[6]

8 miss Mem[8] Mem[6]

30



C SCI 360 Computer Architecture 3 Prof. Stewart Weiss
The Memory Hierarchy

Fully associative using LRU

There is one set, so all blocks map to the single set 0.

The cache contents  after  each reference,  using LRU for replacement,  and using the smallest
numbered available block when more than one is free.

Block
Address

Hit or Miss Contents of Cache Block After Reference

set 0 set 0 set 0 set 0

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]

There  are  three  misses,  which  is  the  least  possible,  since  there  are  three  distinct  blacks
referenced.

Reduction in Miss Rate

As the associativity increases, the miss rate tends to diminish. Increasing associativity means that
blocks can be placed with more flexibility;  at the extreme, in a fully associative cache, as long as
there is a free block, a block can be placed, and if no blocks are free, the LRU replacement
policy will tend to replace the block with the least likelihood of being referenced in the near
future, if the programs exhibit a large amount of temporal locality.

Locating a Block in the Cache

In direct mapping, the number of distinct indices is equal to the number of cache entries.

In an n-way set associative cache, the number of distinct entries is equal to this number divided
by n. 

In a fully associative cache, there is just one index, 0.

The index is 

Index of set in cache = Block number % number of sets in the cache

Each doubling of associativity decreases the number of bits in the index by 1 and increases the
number of bits in the tag by 1. In a fully associative cache, there is no index; the entire address
(excluding the block offset) is compared against the tag field of every block.

This  is  done in  parallel  for  efficiency.  That  is  why it  is  called  associative.  The cells  of  an
associative  cache  are  associative  memory  cells,  which  have  a  match  output.  An associative
memory cell has an exclusive-nor gate that outputs 1 if the data in the cell matches the data on
the input line, and 0 if it does not.
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Cost of Cache: Number of Comparators and Tag Bits.

The increase in associativity increases the number of comparators and tag bits.

Assume 32 bit addresses, 2n  blocks in the cache,  and 4 bytes per block. For a 2m way associative
cache, with 0 <= m <= n, how many tag bits are there and how many comparators?

Ans.  There are 2n / 2m = 2(n-m) distinct sets in the cache.  Each set has 2m members, each of which
has its own tag field.  So there are 2(n-m) * 2m = 2n tag fields.  The number of bits in each tag field
is 32 – (n – m) –2, so there are 

2n * (30 +m – n) tag bits

The number of comparators is always 2m.

Block Replacement Policy

LRU or an approximation to it  is  the most common. It  is  hard to implement  an exact LRU
algorithm, since it  would require time stamping each block. Various approximations to LRU
have been implemented; we will see how they work later in the chapter. 

Multilevel Caches

The larger the cache the smaller the miss rate, but the larger the hit time and cost. The idea of
multilevel caches is to take advantage of the smaller hit time and cost of a small cache and the
smaller miss rate of the larger one. Using a two level cache makes a significant difference in
performance. It reduces the miss penalty without increasing the hit time.  

A small primary cache is usually integrated into the processor. A secondary cache, much larger
in size,  used to be a separate chip on the motherboard but is also now on the same chip as the
processor.  The larger cache has a smaller miss rate than the primary, and its hit time is smaller
than a memory access. Accesses that miss the primary cache but are caught by the secondary
cache have a much smaller miss penalty than if the secondary cache were not present.

Example.

Assume 

the base CPI = 1.0.

clock rate is 4 GHz.

main memory access time of 100 ns including all miss handling

miss rate per instruction at primary cache = 2%

Assume we add a secondary cache with a 5 ns access time for a hit or a miss, and which is large
enough to reduce the miss rate from the processor to main memory to 0.5%.  In other words,
only 0.5% of memory references miss both caches. What is the increase in speed?

The clock cycle is 1/( 4 GHz) = 0.25 ns.

The miss penalty is 100 ns/ (0.25 ns per cycle) = 400 cycles.

The CPI with a 1 level cache alone is 
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   1.0  + 0.02*400 = 1.0 + 8.0 = 9.0 clock cycles

The miss penalty for primary cache accesses that hit the secondary cache is 

5 ns / (0.25 ns per cycle ) = 20 clock cycles. 

The CPI with a 2-level cache is therefore

CPIperfect + cost of misses to primary caught by secondary + misses to both

        =   1.0    + (0.02-  0.005)*20  +  0.005*(20 + 400)

        =   1.0   + 0.015*20      + 0.005*420

        =   1.0   +  0.3  + 2.1 

        =    3.4 cycles.

The speed increase gained by adding a secondary cache is  9.0/3.4 = 2.6 or 260%.

The secondary cache  often uses  larger  block sizes  and higher  associativity  than the primary
cache, to reduce the miss rate. The primary cache has to be small to keep the hit time down and
use a smaller block size to increase the number of total blocks available, to decrease miss rates.

Virtual Memory

If you have already had an operating systems course, then you should know what is meant by
virtual  memory.   If  so,  your  idea  about  virtual  memory  is  about  to  be  put  into  a  different
perspective by your understanding about caches and the different kinds of cache designs.

So far we have been looking at two particular levels of the memory hierarchy, the lower level
being  primary  memory  and  the  upper  level,  the  processor  cache.  Now  we  drop  down  the
hierarchy one level and let the lower level be the secondary storage device and the upper level be
the primary memory.

Viewed this way, memory can be treated like a cache for the secondary storage device. Think of
a program as generating secondary storage addresses,  some of which have been copied into
primary memory.  All of the program's storage is on the secondary storage device, and some
portion of it is copied into memory. From this observation it follows that the address space of a
program does not need to be limited to the size of the physical memory any more than it is
limited by the size of the processor cache. Instead, the process's address space can be as large as
the  secondary  storage  device's  capacity,  and  the  blocks  that  it  currently  uses  will  be
memory-resident.  The term "virtual memory" refers to this method of treating memory. The
terms "virtual address" and "logical address" are used interchangeably.

In summary, in a virtual memory system,

• Logical  memory is  different  from physical  memory.  The  logical  address  space of  a
process is the set of logical addresses it is allowed to reference. The  physical address
space is the set of physical addresses in memory that are allocated to the process at a
given time. 

• Logical and physical address spaces are divided into uniform-size blocks called  pages.
Copies of logical pages are always kept on the secondary storage device. When they are
accessed,  they  are  brought  into  physical  memory.  The  page-sized  units  of  physical

33



C SCI 360 Computer Architecture 3 Prof. Stewart Weiss
The Memory Hierarchy

memory (what would be called cache blocks in a cache) in which logical pages are stored
are called frames.

• Physical memory is treated like a fully set-associative cache for secondary storage.   Any
logical page of a process can be placed in any physical page in its allotment of memory.
But physical memory is not physically an associative memory, so if a logical page might
be in any frame, the only way to be able to find it would be to store tags with each
address and search through all tags, or to use a look-up table. The latter strategy is how
the pages are located.

• The sum of the memory used by all active processes can be larger than the amount of
physical memory.

• A single program can have a logical address space larger than physical memory. Not all
of the logical address space of a program has to be in physical memory while the program
is executing; only those pages currently in use must be in physical memory.

• Programs are easily  relocated between different parts of physical memory because the
method  of  placing  logical  pages  into  physical  memory  allows  them  to  be  placed
anywhere while at the same time allowing the processor to access them easily.

• The  translation  between  logical  and  physical  addresses  provides  a  natural  means  of
protecting programs and data from other processes.

Paging and Caching: An Analogy

The concepts are the same, but the terminology is different. 

Caching Paging
Memory block address Virtual memory address
Cache block location + block offset Physical address 
Memory block Page
Cache miss Page fault

Address Translation

Address translation is the mapping of logical to physical addresses. A page is a block of memory.
To make this work efficiently, page size must be a power of 2.  A logical address is separated
into a high-order set of bits called the page number and a low-order set of bits called the page
offset: 

Logical address = page number*page size + page offset

The page number is shipped to a page translation mechanism that uses it to generate a physical
memory address for the start of that page provided that it is in memory. If it is not in memory,
this is the equivalent of a cache miss, but it is called a page fault. The physical page address is
called the physical page number. It forms the high order bits of the physical address as shown in
the figure below.
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In the example above, the logical pages are 4096 (212) bytes each and the physical memory is 1
GB = 230 bytes. The translation is a combination of hardware and software, as will become clear
shortly.

Design Choices to Improve Performance

1. Page faults are very costly (disk is very slow); reduce cost of a fault by making pages large
(4KB to 64KB) to take advantage of spatial locality. But just as cache blocks that are too
large reduce performance, large page sizes can become inefficient and costly. 

2. Reduce the fault rate by placing translations in fully associative tables to maximize flexibility
of placement of page translations.

3. Handle faults in software because the software overhead is small relative to disk access time,
and software logic for replacement can be more easily implemented.

4. Use write-back for writes; write-through is much too costly.

Page Placement and Faults: Finding Pages

A page table is a table that maps all virtual pages to physical page numbers.  There is a unique
entry for every virtual page.  The index of the table is simply the virtual page number, and the
contents of that table entry include the physical page number.

Because each virtual page number is the index into a unique entry in the page table, the entry
does not need a tag field to distinguish between different virtual pages – the page number is the
complete index.

Each process has the same set of virtual addresses,  called a virtual  address space.  Typically
virtual addresses are 32 bits long in a 32 bit architecture,  making it possible to address 4GB of
virtual memory. Because all processes reference the same set of virtual addresses, each must
have its own unique page table. The page table for a process is part of the process’s state and is
located within the process's logical address space.
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Figure 23: Conceptual translation 
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Figure 24: Page translation using the page table (alone)

Write-Back Policy

In a virtual memory system, physical memory is always treated like a write-back cache, never
write-through. Writing to a page makes the page  dirty. Until a dirty page is replaced, it is not
written to disk; only on replacement does the write-back to disk take place.   In contrast, if a page
is replaced whose dirty bit is not set, it does not need to be written back.  It is therefore better to
replace clean pages than dirty pages, to avoid the extra disk access.  The page tables must keep a
dirty bit  in each page to keep track of which pages are clean or dirty.   The page table also
contains  the page’s address on secondary storage;  sometimes a second table  is  used for this
purpose.

LRU Page Replacement

Least Recently Used  (LRU) page replacement chooses for replacement the page that has not
been used for the longest time. 

Pure  LRU  is  too  expensive  in  hardware  and  software.  Approximations  to  it  use  hardware
reference  bits,  set  by  the  operating  system  when  a  page  is  referenced  and  cleared  by  OS
periodically.  Each page has a reference  bit  as well  as  a  dirty  bit.  Some approximations  use
counters in the page table. The counters are cleared by a page reference and incremented on a
regular  basis by a clock.  The page with the highest counter has not been referenced for the
longest time. 
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Page Table Implementations

Size of page table.

With a 32 bit address, 4KB pages, 4 bytes per page table entry, there are

232 / 212  = 220 pages

The page table would have 4 bytes/entry  * 220  entries =  222 bytes = 4MB

Each active process would require a 4MB page table!  Page tables would eat up memory.

Solutions

1. Only use as much memory for the page table as its current size by keeping a bounds
register for the page table and allocating more memory for it if the page number is larger
than the bounds register.

2. Like 1, but allow the page table to grow in either direction, i.e., two separate page tables
that  grow in  opposite  directions.  (Required  when  compiler  generates  stack  and heap
based storage areas.) Not useful when address space is used sparsely.

3. Use inverted page tables. An inverted page table maps virtual page numbers to physical
pages using a hash function. In other words, in an inverted page table, there is not an
entry for each virtual page number. Instead, the table is a collection of pairs of the form
(virtual page number, physical page number), and a hash function is applied to the virtual
page number to find the pair, to look-up the physical page number.

4. Use multilevel page tables.  Multilevel page tables are a tree-structured collection of page
tables. With multilevel page tables, the virtual page number is partitioned into separate
table indices. For example, the upper 5 bits might be the index into the root table, then the
next 5 bits, the index into the second-level page table, the next 5 bits, an index into the
third-level page table, and so on. The highest level is checked first. Only if the valid bit is
set, is the lower level checked. Only those page tables actually used for translations exist.
This scheme allows sparsely used address spaces to be stored more efficiently.

5. Paged page tables. Page tables can be placed into the paged memory.  Each process has a
page table that keeps track of where the page table’s pages are stored. This per-process
page table is kept in the operating system’s address space, which is often non-paged. The
complete page table for each process is kept in secondary storage.

In practice, modern systems tend to use the fourth choice, multilevel page tables, with in the
most extreme case, four levels.  For example,  in the Intel  32-bit  architecture,  multilevel  page
tables are used, and the number of levels depends upon the specific architecture.

• With 32-bit paging using 4 KB pages, the high order 20 bits are divided equally  into two
10-bit index values. Bits 31:22 identify the first page table entry and bits 21:12 identify
the second page table,  which stores the  page frame number.  Bits  11:0 of  the linear
address are the page offset within the 4-KB page frame. 

• With PAE paging and 4 KB pages, the first index is 2 bits (31 and 30) and points to the
highest level page table.  Bits 29:21 identify a second level page table entry and bits
20:12 identify a third, which  contains the page frame number. 
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• In the  IA-32e architecture, addresses are extended to 48 bits. With  4 KB pages, each
page table has 512  entries and translation uses 9 bits at a time from the 48-bit linear
address. Bits 47:39 identify the highest page table entry, bits 38:30 identify the next, bits
29:21, the third, and bits 20:12 identify the fourth, which stores the page frame number.

Translation Lookaside Buffer (TLB)

Without any other hardware to support it, a virtual memory system will slow down execution by
a factor of at least, because every memory access will require two or more accesses: one for each
level of page table access (with multilevel page tables this can be severe)  to retrieve the page
table entry and one to do the actual  load or store operation.  In short,  each absolute address
computation  would  require  a  number  of  accesses  corresponding  to  the  page  table  depth.
Furthermore, these accesses cannot be performed in parallel since they depend on the previous
table lookup's result. 

So designers  came up with the idea of caching the translations  of the virtual  addresses into
physical addresses.  The cache in which the translations are stored is called  a  Translation
Lookaside Buffer (TLB).  Since the page offset part of the virtual address does not play any part
in the computation of the physical frame address, only the rest of the virtual address is used as
the tag for this cache (the TLB).  The tag field therefore contains the bits of the virtual page
number,  and the data field contains  the frame number of this  page,  if  present.  The valid bit
indicates  whether  the  page  translation  is  meaningful.  The  dirty  and  reference  bits  indicate
whether the page is dirty or recently used.

Depending on the page size this means hundreds or thousands of instructions or data objects
share the same tag and therefore same tag.  For example, if pages are 4 KB, then every word
address in a single page has the same tag, which  means that 2^10 distinct one-word structures
have the same tag.

The TLB caches the most recently used portions of the page table.  It is usually a small cache
because it has to be extremely fast. Modern CPUs provide multi-level TLBs, just like  the other
caches; the higher-level caches are larger and slower. The small size of the level 1 TLB is often
made up for by making it fully associative, with an LRU replacement policy. If it is larger, it
might be set associative. The level 1 TLB is often separated into  an instruction TLB (iTLB) and
a data TLB (dTLB). Higher-level TLBs are usually unified, as is the case with the L2 and L3
caches. 

In a system with a TLB, the steps followed on a reference are:

1. Look up page number in TLB.

2. If a hit, turn on reference bit (and also dirty bit if a write) and form physical address.

3. If a miss, go to page table with page number and get translation.

4. If the translation is there, load it into TLB and try again.

5. Otherwise, signal the OS to retrieve the page from disk, wait for it to return it, and load it
into the page table and then load the TLB and try again.
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6. If an entry needs to be replaced, its reference and dirty bits have to be written back to the
page table. (They are the only thing that changes in the data field). The write always takes
place at replacement time.

Typical TLB parameters:

size: 32- 4096 entries

block size: 1 – 2 page table entries  

hit time: 0.5 – 1 clock cycle

miss penalty: 10 – 30 clock cycles

miss rate: 0.01% - 1%

Integrating the TLB, Cache, and Virtual Memory

When a  cache  and TLB are  both  present,  the  question  is,  should  the  TLB or  the  cache  be
accessed first?  If the cache is physically indexed and physically tagged, it means that the cache
is  referenced  using  physical  addresses,  not  virtual  addresses.  This  means  that  the  virtual
addresses must be translated before the cache is accessed. In this case the TLB access precedes
the cache access, as shown in Figure 25. 

The alternative is to access the cache with virtual addresses, in which case it is called a virtually
addressed cache. Because both the tags and the index bits come from a virtual address, the cache
is also said to be  virtually indexed and  virtually tagged. In this case, the TLB is not accessed
first. The processor sends the virtual address directly to the cache. The cache is indexed with the
virtual address and the tags are virtual addresses. The data is the actual data stored at that virtual
address.  On a cache hit, the data in that virtual address can be delivered to the processor, but on
a cache miss, the virtual memory system must be used to locate the physical page in which the
missed address resides.

A  virtually addressed cache does not work if multiple processes may be accessing the cache,
because different processes have the same virtual address space, and  aliasing may result. To
illustrate, suppose we have two processes, P and Q.  P has a virtual address 5062 that maps to
physical address 1020. Q has a virtual address 5062 that maps to physical address  3280. There is
just one entry in the cache for virtual address 5062. Suppose P runs and writes that location. Now
Q runs and reads 5062. Q will not get the data from 3280, but from 1020. When caches are
virtually indexed and tagged, this problem must be overcome.  

One method is a compromise in which the tag is translated to a physical address but the index
remains virtual. This is called a virtually indexed and physically tagged cache. If the index bits
are entirely contained within the page offset, then they are actually physical addresses, since the
page offset is not virtual.  If the index bits extend past the highest-order page offset bits, then the
index is in fact partly a virtual address.  If the index bits are entirely contained within the page
offset, then the page offset is used to index the cache and the TLB is used to translate the page
number  to  a  physical  address,  which  is  given  to  the  cache  as  well.  The  aliasing  problem
disappears because, in effect, the cache acts like a physically indexed cache.
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Figure 25: Integrating the TLB with a physically addressed cache

An Example: The MIPS R2000 TLB

Features:
1. Physically indexed and tagged
2. 4 KB page size
3. 32-bit address space
4. TLB has 64 entries and is fully associative
5. It is shared between instructions and data, has 64 bits per entry, consisting of a 20 bit tag

and a 20 bit physical page number, and valid and dirty bits.

Handling Page Faults and TLB Misses

Unlike cache misses, which are handled entirely in hardware, page faults are handled partly by
software and partly in hardware.  Which does which steps is system-dependent.  The general
steps are the topic of this section.  We assume a physically tagged and indexed cache.
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When the processor references a page:
if it is present in the TLB,

the physical page number is copied from the TLB into the physical address register and the
control bits are updated as necessary;

else
the page table base register contents are accessed and used with the page number to locate
the page table entry in physical memory;
memory is accessed and the page table entry is read into the MMU;
if the valid bit is set (the page is in memory), 

an entry is added to the TLB for this logical page/physical page pair, replacing an
existing entry if necessary.

else
(a page fault has occurred) page is not in memory, the hardware circuits in the MMU
generate  an exception to the CPU to indicate  the fault.  The exception  causes the
running process to be preempted and its current program counter (PC) to be saved
(usually  into  an  exception  PC  register).  and  the  operating  system  to  run.  The
operating system finds the page on disk and chooses a frame into which to place it. If
it must, it replaces an existing page, writing it to disk first if it is dirty. The operating
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system updates the page table to contain the correct translation, setting the valid bit,
and the entry is copied into the TLB. The reference to the page is re-executed.

The physical address is sent to the cache.
If it is a caches miss

the  address  is  given  to  memory,  which  fetches  the  block  and delivers  it  to  the  cache
controller.

The contents of the cache are delivered to the processor.

The table below summarizes what combinations of events are possible in a combined virtaul
memory system with a physically-tagged and indexed cache.

TLB Page Table Cache Possible?

Hit Hit Hit Yes, but the page table is not checked on a TLB hit.

Hit Hit Miss Yes, but the page table is not checked on a TLB Hit

Hit Miss Hit No, even if the page table were checked, every translation in
the TLB must be in the page table.

Hit Miss Miss No, for the same reason as above.

Miss Hit Hit Yes -- not in TLB, found in page table, and data is in cache.

Miss Hit Miss Yes -- not in TLB, found in page table, but the data is not in
the cache.

Miss Miss Hit No, because this implies data is in cache but not in memory.

Miss Miss Miss Yes -- page fault and then a cache miss.

Virtual Memory and Protection

All modern computers have multiprogramming operating systems, which means that they allow
multiple programs to be in memory at the same time, and they timeshare the processor among
them.  When  multiple programs are memory resident, this leads to problems that do not exist
when only one is in memory at a time.  One problem is that programs could access each others'
data  and/or  code.  Therefore,  the   operating  system  must   prevent  different  programs  from
accessing  or  modifying  each  others',  or  the  operating  system's,  in-memory  data  and  code.
Without some type of hardware support, this is infeasible. 

At the very least,  the hardware must provide three capabilities:

1. The processor must have two different modes of operation:

◦ supervisor or privileged or kernel mode, and 

◦ user or unprivileged mode

2. Instructions that can be executed only in privileged mode, and portions of the processor
state  that  can  be  read  but  not  modified  in  unprivileged  mode,  and only  modified  in

42



C SCI 360 Computer Architecture 3 Prof. Stewart Weiss
The Memory Hierarchy

privileged mode. For example, the bit that shows which mode it is in should be readable
but not writeable in unprivileged mode.

3. An ability to switch between the two modes. Usually this is accomplished with special
traps, or exceptions, that transfer control to a specific address in the operating system's
address space in which the change of context is carried out.  

In addition, in a virtual memory system, it must ensure that the page tables themselves are not
modifiable by any user process, i.e.,  they must be placed in the kernel's (operating system's)
address space.

Each running process has its own page table. To use memory efficiently, some processes are
allowed to share physical pages. For example, frequently run software, such as the C runtime
libraries,  are shared among processes. To make this possible, the page table entries of different
processes map to the same physical pages. But to prevent processes from modifying such shared
pages, there have to be bits that indicate that such logical pages are not writable. This property of
being non-writable  is  process-specific,  as  some processes  may have  the  ability  to  modify  a
physical page but not others. Therefore this bit belongs in the page table, not to the frame or
physical page. The bit that controls whether or not a page can be modified is typically called
something like the read-only bit, or the write-bit.

In general, each page should have the following bits3:
PAGE_PRESENT Page is resident in memory and not swapped out (valid bit)
PAGE_RW  Set if the page may be written to 
PAGE_USER Set if the page is accessible from user space (to protect system pages)
PAGE_DIRTY Set if the page is written to 
PAGE_ACCESSED Set if the page is accessed (reference bit)

These bits are part of a page table entry and must be supported by the hardware. In other words,
the processor and TLB should have operations to access these bits easily. It is not necessary that
the bits be easily accessible when they are in the page table but not in the TLB, because on a
TLB miss, the page table entry is first brought into the TLB before the entry is accessed.

Multiprocessor Cache Coherency

In a shared memory multiprocessor with separate caches in each processor, the problem is that
the separate caches can have copies of the same memory blocks, and if the protocol does not
address this issue, the copies will end up having different values for the blocks. This will happen
whenever two different processors update their copies with different values and they each use a
write-back policy. Because they use write-back neither sees the change in the block made by the
other. 

Example

Suppose a machine has two processors named A and B have write-through caches. Suppose that
each has loaded a copy of a memory address X into its respective cache and that before the load,
X had the value 1. Then they each have a 1 in the cache block for X. Now processor A writes the
value 2 into X, which it finds in its own cache. Because it is write-through,  a 2 is written to the

3 These names are used in Linux implementations.
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memory copy of X. Now processor B's copy of X is old, and B will be using an outdated value of
X. 

When two caches have different values, they are said to be incoherent.  Cache coherence refers
to the state of the system in which all caches have up to date copies of the memory blocks. A
more precise definition is as follows. 

Definition. A multiprocessor memory system is cache coherent, if for any processors P and Q, 

1. A read by P of location X that follows a write by P to X, with no writes to X by another
processor between the write and the read by P, always returns the value written to X by P. 

2. A read by P of location X that follows a write by Q to X returns the written value by Q if the
read and write are sufficiently separated in time, and no other writes to X occur between the
two accesses.

3. Writes by P and Q to the same location are serialized. This means that if P writes a value c to
location X and Q writes a value d to X, then all processors will see either c followed by d or
all processors will see d followed by c, but it is not possible for some processors to see c
followed by d and others to see d followed by c. 

The first condition is just the ordinary order-preserving property that single-processor machines
expect to see -- if a process writes a value to memory and then reads that location, it should see
what it wrote.

With respect to the preceding example, when A writes a 2 to X, then B should see that 2  in its
cache before it attempts to access X, provided that enough time has passed. If A and B both tried
to write to X at the same time, one's value would be written to memory first and then the other's,
but there is no specific order that must be followed.

Coherence Enforcing Methods and Cache Snooping

The caches in a  multiprocessor provide two different mechanisms for handling shared data in 
order to make cache coherence possible:

Data Migration. A block of data is moved into a local cache so that it can be used locally in that
cache  by  its  processor.  Migration  reduces  the  cost  of  accessing  shared  data  items  across  a
communication channel such as a bus or network.

Data Replication. A shared data item that is read (and not written) it is copied into each cache
that reads it. This reduces memory accesses and contention.

The hardware has to provide this functionality to make any cache coherence method feasible. A
set  of  rules  that  the  hardware  uses  to  provide  cache  coherence  is  call  a  cache  coherence
protocol. In order for such a protocol to work,  the state of each data block has to be tracked, and
this must be facilitated by the hardware. What kinds of information are in the state depends on
the protocol.

The most common cache coherence protocol is cache snooping.  Each cache snoops on the bus
activity. See Figure 27. Each cache has a special tag memory and controller called the snoop tag.
The snoop tag is essentially a copy of the tag memory of the cache and logic circuits that listen to
all  bus  activity  to  determine  whether  memory addresses  placed on the  bus  match  any valid
blocks that it has, without interfering with cache operation..
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Briefly, the way they work is that, on a read miss, all caches check to see if they have a copy of
the requested data. If they do, they supply the data to the cache that missed (data migrates). On a
write to any cache, all caches check to see if they have a copy of the written block, and if they
do, they either invalidate it or update their copy. 

Cache Snooping Protocols
There are two common cache snooping protocols: write-invalidate and write-update.

Write-invalidate

In this method, a writing process guarantees that it has exclusive access to the data item it is
about to write. The writing processor causes all copies in other caches to be invalidated before
changing its local copy by sending out an invalidate signal  to all other caches telling them to
invalidate their copies of the item. It then writes its local data.   Until another processor requests
the  same  block,  it  remains  valid  and  no  further  invalidation  is  required.  This  is  a
multiple-reader,single-writer synchronization problem.  It is analogous to a write-back cache in a
single processor system in that it has a valid copy but memory does not.

Advantage: reduces bus activity because only first write invalidates; subsequent writes do not
require invalidate signals.

Write-update

The writing processor broadcasts the new data over the bus and all copies are then updated. This
is also called write broadcast.  In this protocol, the data itself is sent over the bus to the other
caches. It is analogous to a write-through cache in a single processor system.

Advantage: makes data available immediately, reducing cache latency seen at processors.

Commercial caches often use write-invalidate.
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Role of Block Size

The larger the block, the more unnecessary data is transferred or invalidated.  If one word is
changed in an 8-word block, the entire block is invalidated or updated. This reduces bandwidth
unnecessarily. Large block sizes can create an effect called false sharing. As blocks get larger
and larger, they can contain different data items that are being used by different processors. At
that point the data items are part of the same bock and so the block now looks like a shared
block, even though the different processors are not sharing the same data item. Smaller block
sizes reduce the probability of false-sharing.

An Example of a Cache Coherency Protocol  (optional)

A cache coherency protocol can be completely described by the states that a cache block can be
in, and the effects upon those states caused by all possible events of interest, either inside the
processor to which the cache belongs, or "on the bus", meaning events caused by some other
processor.  Events on the local processor are things like reads to the cache block or writes to it.
Events  on  the  bus  are  things  like  writes  to  a  copy  of  that  block  by  another  processor,  or
invalidate  signals for that  block sent on the bus by a processor.  Therefore,  we can describe
protocols as finite state diagrams, in which the states are those of an arbitrary cache block. There
are 3-state and 4-state protocols. 

A Basic 3-State Protocol

The textbook describes the simplest 3-state protocol. In this protocol there are three states: (1)
read-only or  shared, (2)  read/write,  exclusive, or  dirty, and  invalid.  They have the following
meanings.

Read-only: It is a clean block that can be shared.  I.e., it has only been read.

Read/Write: The block is dirty because the processor wrote to it; it is now in a state in which it
cannot be shared by another processor. Also called dirty or exclusive, as noted above.

Invalid:  The block has been invalidated by a cache belonging to another processor.  

Explanations of the Transitions

If the processor has a read-miss for a cache block, no matter what the current state of the block
(in this cache), it needs to get the block from memory or from another cache if possible. If the
caches are write-back caches, one may have a more recent copy than memory, since it might
have been written to but not yet written back to memory. If such a dirty copy exists, the cache
that owns the dirty copy aborts the memory read operation placed on the bus. The processor
owning this cache must force the cache to write its dirty block back to memory before the read
takes place.  If the cache that had the read miss has a dirty block that needs to be replaced to load
this one, that write-back must take place before the load.  All caches must therefore monitor the
bus for read misses. The read miss ultimately causes the block to become read-only. 

If the processor writes data to a block that is currently shared or read-only,  it  must send an
invalidate signal to other caches. The data had been clean in it, so it is safe to overwrite it, but
now the block is now dirty.
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If the block was in a read-only state but there was a write miss for that block (multiword blocks),
it is the same as a write-hit. The cache must get the block from memory or another cache, so it
sends an invalidate signal (and hopes a cache will send the block). Eventually it gets the block
and writes to it, so it becomes a dirty block.

If  a  processor  writes  to  a  block  that  is  already  dirty,  nothing  has  to  be  done,  because  the
processor itself made the block dirty and it is free to change its contents.
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Figure 28: Finite state automata of snooping cache protocol
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If a block is invalid, an attempt to write to it is a write miss. In this case, it must get the block
from memory or the other caches (depending on whether they support this) and set it to dirty.

These transitions can be summarized by the pair of state transition diagrams in Figure 28. The
first FSA defines the transitions caused by processor events; the second defines the transitions
caused by bus events. I have also included a second FSA instead of the FSA in Figure  28b,
because I believe that the one in Figure 28b is incorrect. The problem has to do with read misses
seen on the bus when a block is in the dirty state.  If a block is dirty and some other processor
has a read miss for that block, then that processor will obtain that block from memory or some
other cache. If the block is dirty, it means that the local processor wrote to the block but no other
processor has changed a copy of it since that write.  Therefore, this is the most recent copy of the
block and it is this copy that must be given to the cache that had the miss.  When this happens,
all caches will have a copy of this block and it will therefore be clean again.
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