
CSci 395.86 Open Source Software Development
Project Evaluation

Prof. Stewart Weiss

Project Evaluation
1 Summary
Given that one of your major objectives is to make a meaningful contribution to a free and open source
software (FOSS) project, it is crucial that you find a project for which this is possible in the time frame that
you have allocated for this task. Your objective might even be more restrictive because you want to make
a contribution to a “humanitarian” FOSS project, called an HFOSS project, of which there are much fewer
from which to choose. The number of FOSS projects is so large and varied in terms of their approachability,
size, programming language base, level of activity, complexity of code, community friendliness, domain
knowledge prerequisites, and complexity, that you will need some means other than an exhaustive search for
choosing projects that are the optimal choices for you. This implies that you need a set of criteria by which
you can evaluate a project for how well it matches your goals, and that there should be an effective means of
deciding for any project how well it satisfies these criteria. The objective of this activity is to give you some
experience in evaluating projects in this way, using a combination of qualitative and quantitative measures.

2 Background
Though open source software existed before the World-Wide-Web was created, the Web and Internet con-
nectivity have been essential for the rapid expansion of FOSS in recent years. FOSS projects need to be
available on the Web in order for anybody in the world to be able to contribute to them. There are several
websites that provide a home and visibility for FOSS projects (although many of the biggest projects are
hosted on their own servers and websites). Some of these websites are source forges, such as SourceForge,
and some are full-featured development environments, such as GitHub and GitLab. In addition, there
are online directories of open source projects, such as OpenHub, which provide statistics about projects, such
as the number of contributors, software metrics, and commit activity.
In short, different projects are hosted on different platforms. As of November 2018, GitHub hosted about
100 million repositories, with more than 31 million users and contributors1 and SourceForge hosted about
430,000 projects with 3.7 million registered users2. GitLab is much smaller, with about 2000 contributors
and 550,000 projects3. Wikipedia has a comparison of source code hosting sites at
https://en.wikipedia.org/wiki/Comparison_of_source_code_hosting_facilities.
The point is that there are many different places to look for projects. In this activity, we will apply criteria
for project evaluation to a few different projects.

2.1 Where to Look

Sometimes you need to look for the answers to the questions in the project’s code repository, and sometimes
you need to start on the project’s home page. In general it is a good idea to start on the home page, to get
a sense of what the project is about and learn as much background as you can, before diving into the details
of its code repository.

3 The Anatomy of an Open Source Project
Before we can evaluate an open source project, we have to know its anatomy, i.e., its components, its
organization, its structure, and how they are interrelated.

3.1 The People

Who are the people in the project and what roles do they play?
1 Source: https://github.com/about
2 Source: https://sourceforge.net/
3 Source:https://en.wikipedia.org/wiki/Comparison_of_source_code_hosting_facilities

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 1

https://en.wikipedia.org/wiki/Comparison_of_source_code_hosting_facilities
http://creativecommons.org/licenses/by-sa/4.0/ 


CSci 395.86 Open Source Software Development
Project Evaluation

Prof. Stewart Weiss

• Author(s): These are the people or the organization that created the project.

• Owner(s): These are the people who have administrative ownership over the organization or reposi-
tory, which might be a board and may or may not include the original author.

• Maintainers: These are people who are responsible for driving the vision and managing the orga-
nizational aspects of the project. They are the ones who accept pull requests and manage the code
base.

• Contributors: This is everyone who has contributed something back to the project.

• Community Members: These are the people who use the project. They might be active in conver-
sations or express their opinion on the project’s direction.

In general, you can find who is involved with a project on its website, in a “team” or “about us” page, or in
the repository for governance documentation.

3.2 The Important Documents

Aside from the code itself, every project has a set of documents, usually found with the code, that are
important for anyone planning to use the project, to contribute to it, or to modify it and redistribute it.

• LICENSE: Every open source project must have an open source license, otherwise it is not open
source. If the project does not have a license, it is not open source. The content of the license
determines what can be done with the code.

• README: The README is the gateway to the guidance and help for the project. It is the very first
document that anyone should read. This is why it is named README. It welcomes new community
members to the project and it explains the project’s purpose and what someone should do to get started
using or working on the project.

• CONTRIBUTING: A contributing document is intended only for those people who intend to con-
tribute to the project. It explains what types of contributions are needed, what protocol is used for
contributing, what form contributions should have, and in general, how the contribution process works.
It might include links to coding style guidelines for example or other documentation that a contributor
needs to read before working on the project. If a project does not have a CONTRIBUTING file, it is
a sign that the project is not so welcoming.

• CODE_OF_CONDUCT: The code of conduct sets down the rules for the behavior of the commu-
nity and helps to encourage a friendly, welcoming environment. Not all projects have a CODE_OF_CONDUCT
file, but those that do are projects that recognize that this is an important part of the project and they
are usually welcoming projects to which you can contribute.

In addition to these core documents, projects might have tutorials and governance documents.

3.3 The Tools

Every open source project uses a variety of tools. These include the tools for tracking issues, for managing
pull requests, and so on. In general, a project’s tools include

• Issue Tracker: This is a tool that keeps track of all reported issues, including their descriptions, dates
when they were first reported, whether someone has been assigned to work on them, what their status
is, and so on.

• Pull Request Manager: This is similar to an issue tracker but it keeps track of pull requests and
their status.

• Code Hosting Site: This is the website that hosts the code. Its structure and design greatly influence
how a contributor interacts with the project and works on it. Some projects host their code on their
own servers and have a custom interface, whereas others may use a hosting site such as GitHub.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 2

http://creativecommons.org/licenses/by-sa/4.0/ 


CSci 395.86 Open Source Software Development
Project Evaluation

Prof. Stewart Weiss

• Programming Language(s): The set of languages used to write the code of the project.

• Communication Channels: These might be chat channels (such as Slack or IRC) for casual conver-
sation, collaboration, and quick exchanges.

• Discussion Forums/Mailing Lists: Some projects may use these for conversational topics such as
how one solves a problem, rather than using bug reports or feature requests.

• Development Environment: This is the set of tools needed to work on the project and install it.
Very often one may need to download libraries and development tools to work on the project code.

4 Project Evaluation Criteria
Let us use the term “appropriateness” to mean how well a project fits your goal of being able to contribute
to it meaningfully in the time frame of a couple of months. The appropriateness of a project is determined, for
the most part, by the answers to a set of important questions. Some of these questions are more important
than others in terms of whether the project is a good choice or not. Some researchers in this field have
even suggested that the questions that should be asked fall into three categories related to the project:
viability, approachability, and suitability [1], and that some should be tagged as critical whereas others are
not as critical and are tagged as secondary. I will not categorize them as such. I view this as an optimization
problem, in that different projects will satisfy some criteria more than others, so that there is no single metric
that can be used to assess projects. It will reduce to a question of which criteria become more important in
the end.
The general types of questions that you need to answer about a project under consideration follow. These
are not the specific questions that you should answer as part of this activity; those will follow.

• Is it open source? This is obviously the first question to answer. A negative answer for this one stops
further evaluation.

• What is its license? Does the license allow for forks and modifications?

• How active is this project? Are people actively submitting issues and are people closing issues in a
timely manner?

• How welcoming does the community seem? Are people friendly in the issue discussions, the discussion
forum, and chat?

• How easy is it to find information about contributing to the project? Are there clear guides and
documentation that can help someone who wants to contribute? Are there written guides about rules
of conduct, for example? In short, is it an inviting project?

• What programming languages are used in the project?

• What is the development environment, and how hard is it to download and install it?

• How hard is it to understand the project code? Is it a large code base?

• Does the project depend on external additional software modules such as database or graphics libraries?

• How much does one need to know about the domain of the application in order to understand the
code? For example, if it is a health-related application, how much medical or biological background
would a contributor need?

• How complicated is the code and how large is it?

• How mature is the project? Is it very new, or has it been around for a long time? Does it have a stable
release yet?

• Is the project interesting and/or exciting to you?

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 3

http://creativecommons.org/licenses/by-sa/4.0/ 


CSci 395.86 Open Source Software Development
Project Evaluation

Prof. Stewart Weiss

It is unlikely that you will find a project for which the answers to all questions are the “good” ones. You
will probably have to make some hard decisions. But

• if the community is not friendly,

• if finding the answers to questions is hard,

• if the project is not very active,

• if the code is hard to understand, or

• if it is very difficult to download and install the development environment,

then it is not a good first project.
So how do you answer these questions? How can you evaluate a project based on these criteria? The next
section gives you specific questions for which you should find the answers for any project.

5 Specific Questions
The material in this section is partly based on the GitHub Open Source Guide and is used under the CC-
BY-4.0 license. These are the specific questions that you should try to answer for each project that you are
asked to evaluate. For some, finding the answer is hard.

5.1 Finding the Project License

1. What is the project’s license?
There might be more than one. If so, what are some of the licenses that you found? On most source
forges there will be a file named LICENSE or something similar in the root level of the repository. Find
the license and if it is something you do not understand, try looking for a simple summary of what it
allows and does not allow.

5.2 Assessing the Code Base

From a technical perspective, it is important that you feel confident and comfortable in using the tools.

2. What programming languages are used in the project? What is the major language?

3. What is the development environment, and how hard is it to download and install it? Is it easy to find
information about this?

4. Does the project depend on external additional software modules such as database or graphics libraries?

5. How complicated is the code and how large is it?

6. How mature is the project? Is it very new, or has it been around for a long time? Does it have a stable
release yet?

5.3 Assessing the Activity Level

Find the issue tracker, the pull request tracker, and if there are discussion boards or wikis, find them as well.
The kinds of things you need to know about a project include:

• the length of time issues stay open (responsiveness)

• the length of time pull requests remain unaccepted

• the frequency of issues reported

• the frequency of pull requests

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 4

http:// github.com/github/opensource.guide
 https://creativecommons.org/licenses/by/4.0/
 https://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/ 


CSci 395.86 Open Source Software Development
Project Evaluation

Prof. Stewart Weiss

• the trajectory over time of the above parameters; for example, are issues being reported less often now
than they were a few years ago?

Specific questions to ask are

7. How long ago was the last commit?

8. How many people are maintaining the project?
This can be hard to find. You have to look at the conversations or who is doing the merges.

9. How many contributors has the project had in the past year?

10. How frequently do people commit?
Compute the number of commits per week for the past twelve weeks.

On GitHub you can find this information in the repository’s root directory. For example, you can find commit
activity by clicking "Commits" in the top bar. Look at the Insights tab. For projects that have their own
sites, you have to find the repository and dig around. You can also look on OpenHub for this information.

11. How many issues are currently open?

12. How long do issues stay open?
Look at the list of closed issues. Take the twenty most recently closed issues and look at when each
was first reported. Compute the number of days that each was open and take the average.

13. Is there active discussion on the issues?
In GitHub, in the rightmost column in the Issues view, you can see how many comments were made
per issue. Use these numbers to compute the average of the comments for the twenty most recent
issues.

14. Are issues tagged as easy, hard, etc.? Are they triaged?

15. How many issues were closed in the past six months?

On GitHub, a project might have an “Issues” tab and you can view them. You can click the "closed"
tab on the Issues page to see closed issues, for example. Some projects maintain their own issue trackers
and you will have to find them by “following your nose” on their websites (e.g., Mozilla). Projects listed on
SourceForge usually have repositories hosted on some other site, such as GitHub, where they will have their
issue tracker.

16. How many open pull requests are there?

17. Do maintainers respond quickly to pull requests when they are opened? I.e., How long are these pull
requests sitting there un-answered?
Look at the closed pull requests to see how long they stayed open. Take the twenty most recently
closed ones and look at when each was first reported. Compute the number of days that each was open
and take the average.

18. Is there active discussion on the pull requests?
Use the same method as you did for the issues.

19. How many pull requests were opened within the past month?

20. How recently were any pull requests accepted and merged?

On GitHub, you can click on the "closed" tab on the Pull Requests page to see closed pull requests.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 5

http://creativecommons.org/licenses/by-sa/4.0/ 


CSci 395.86 Open Source Software Development
Project Evaluation

Prof. Stewart Weiss

5.4 Assessing the Welcomeness

21. Is there a CONTRIBUTING document?
Read the first few paragraphs and see if it is easy to understand.

22. Is there a CODE OF CONDUCT document?
Read the first few paragraphs and see if it is easy to understand.

23. Do the maintainers respond helpfully to questions in issues? Are responses generally constructive?

24. Are people friendly in the issues, discussion forum, and chat?

25. Do pull requests get reviewed?

26. Do maintainers thank people for their contributions?

References
[1] Heidi J.C. Ellis, Michelle Purcell, and Gregory W. Hislop. An approach for evaluating foss projects

for student participation. In Proceedings of the 43rd ACM Technical Symposium on Computer Science
Education, SIGCSE ’12, pages 415–420, New York, NY, USA, 2012. ACM.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 6

http://creativecommons.org/licenses/by-sa/4.0/ 

	Summary 
	Background
	Where to Look

	The Anatomy of an Open Source Project
	The People
	The Important Documents
	The Tools

	Project Evaluation Criteria
	Specific Questions
	Finding the Project License
	Assessing the Code Base
	Assessing the Activity Level
	Assessing the Welcomeness


