
Multicore & GPU Programming : An Integrated Approach

SharedMemory Programming : OpenMP

By G. Barlas

<C> G. Barlas, 2015 2

Objectives

● Learn how to use OpenMP compiler directives to introduce concurrency in
a sequential program.

● Learn the most important OpenMP #pragma directives and associated
clauses, for controlling the concurrent constructs generated by the
compiler.

● Understand which loops can be parallelized with OpenMP directives.
● Address the dependency issues that OpenMP-generated threads face,

using synchronization constructs.
● Learn how to use OpenMP to create function-parallel programs.
● Learn how to write thread-safe functions.
● Understand the issue of cache-false sharing and learn how to eliminate it.

<C> G. Barlas, 2015 3

Introduction

● The decomposition of a sequential program into
components that can execute in parallel is a tedious
enterprise.

● OpenMP has been designed to alleviate much of the effort
involved, by accommodating the incremental conversion of
sequential programs into parallel ones, with the assistance
of the compiler.

● OpenMP relies on compiler directives for decorating
portions of the code that the compiler will attempt to
parallelize.

<C> G. Barlas, 2015 4

OpenMP History

● OpenMP : Open Multi-Processing is an API for shared-memory
programming.

● OpenMP was specifically designed for parallelizing existing sequential
programs.

● Uses compiler directives and a library of functions to support its operation.
● OpenMP v.1 was published in 1998.
● OpenMP v.4.0 was published in 2013.
● Standard controlled by the OpenMP Architecture Review Board (ARB).
● GNU C support:

– GCC 4.7 supports OpenMP 3.1 specification

– GCC 4.9 supports OpenMP 4.0.

<C> G. Barlas, 2015 5

OpenMP Paradigm

● OpenMP programs are Globally Sequential, Locally
Parallel.

● Programs follow the fork-join paradigm:

<C> G. Barlas, 2015 6

OpenMP Essential Definitions
● Structured block : an executable statement or a compound block,

with a single point of entry and a single point of exit.
● Construct : an OpenMP directive and the associated statement,

for-loop or structured block that it controls.
● Region : all code encountered during the execution of a construct,

including any called functions.
● Parallel region : a region executed simultaneously by multiple

threads.
● A region is dynamic but a construct is static.
● Master thread : the thread executing the sequential part of the

program and spawning the child threads.
● Thread team : a set of threads that execute a parallel region.

<C> G. Barlas, 2015 7

„Hello World“ in OpenMP

●Can you match some of the previous definitions with parts of this
program?

<C> G. Barlas, 2015 8

„Hello World“ Sequence Diagram
● One of the possible execution sequences:

<C> G. Barlas, 2015 9

#pragma directives

● Pragma directives allow a programmer to access compiler-
specific preprocessor extensions.

● For example, a common use of pragmas, is in the management
of include files. E.g.

#pragma once

● Pragma directives in OpenMP can have a number of optional
clauses, that modify their behavior.

● In the previous example the clause is num_threads(numThr)

● Compilers that do not support certain pragma directives, ignore
them.

<C> G. Barlas, 2015 10

Thread Team Size Control

● Universally: via the OMP_NUM_THREADS environmental
variable:

$ echo ${OMP_NUM_THREADS} # to query the value

$ export OMP_NUM_THREADS=4 # to set it in BASH

● Program level : via the omp_set_number_threads function,
outside an OpenMP construct.

● Pragma level : via the num_threads clause.

● The omp_get_num_threads call returns the active threads in
a parallel region. If it is called in a sequential part it returns 1.

<C> G. Barlas, 2015 11

Variable Scope

● Outside the parallel regions, normal scope rules apply.
● OpenMP specifies the following types of variables:

– Shared : all variables declared outside a parallel region are by default shared.
That does not mean that they are in anyway "protected".

– Private : all variables declared inside a parallel region are allocated in the run-
time stack of each thread. So we have as many copies of these variables as the
size of the thread team. Private variables are destroyed upon the termination of a
parallel region.

– Reduction : a reduction variable gets individual copies for each thread running
the corresponding parallel region. Upon the termination of the parallel region, an
operation is applied to the individual copies (e.g. summation) to produce the
value that will be stored in the shared variable.

● The default scope of variables can be modified by clauses in the pragma
lines.

<C> G. Barlas, 2015 12

Example : Function Integration
● The sequential implementation:

double integrate (double st, double en, int div, double (*f) (double))
{
 double localRes = 0;
 double step = (en - st) / div;
 double x;
 x = st;
 localRes = f (st) + f (en);
 localRes /= 2;
 for (int i = 1; i < div; i++)
 {
 x += step;
 localRes += f (x);
 }
 localRes *= step;

 return localRes;
}
//---------------------------------------
int main (int argc, char *argv[])
{
 . . .
 double finalRes = integrate (start, end, divisions, testf);

 cout << finalRes << endl;

<C> G. Barlas, 2015 13

Parallel Function Integration

<C> G. Barlas, 2015 14

OpenMP V.0 : Manual partitioning
● Given the ID of each thread, we can calculate:

Race condition!

<C> G. Barlas, 2015 15

OpenMP V.1 : Removing the race cond.
● Giving each thread, its own private storage. Sequential

reduction is required afterwards.

<C> G. Barlas, 2015 16

OpenMP V.2 : Implicit Partitioning
with locking

● Moving the parallel construct inside the integrate() function. The
main remains the same as the sequential program.

This statement
is also different

from the sequential
version.

Can we eliminate x
from here?

<C> G. Barlas, 2015 17

OpenMP V.3 : Implicit Partitioning
with reduction

● Most efficient way to consolidate results.

<C> G. Barlas, 2015 18

Reduction clause
● The reduction clause syntax:

reduction(reduction_id : variable_list)

where variable_list is a comma-separated list of variable
identifiers, and reduction_id is one of the following binary
arithmetic and boolean operators :

+, *, -, & , &&, |, || , ^, max, min

● Example:

<C> G. Barlas, 2015 19

Reduction clause (2)
● The initial values of a reduction variable's private copies

depend on the operator used:

<C> G. Barlas, 2015 20

Scope modifying clauses

● shared : the default behavior for variables declared outside of a parallel block.
It needs to be used only if default(none) is also specified.

● reduction : a reduction operation is performed between the private copies
and the „outside“' object. The final value is stored in the „outside“' object.

● private : creates a separate copy of a variable for each thread in the team.
Private variables are not initialized, so one should not expect to get the value
of the variable declared outside the parallel construct.

● firstprivate : behaves the same way as the private clause, but the
private variable copies are initialized to the value of the „outside“' object.

● lastprivate : behaves the same way as the private clause, but the
thread finishing the last iteration of the sequential block (for the final value of
the loop control variable that produces an iteration), copies the value of its
object to the „outside“' object.

● threadprivate : creates thread-specific, persistent storage (i.e. for the
duration of the program) for global data.

<C> G. Barlas, 2015 21

Loop Level Parallelism
● A for-loop has to satisfy certain conditions, which in OpenMP jargon are

called the canonical form:
– The loop control variable has to be an integer type (signed or unsigned), a pointer

type (e.g. base address of an array), or a random access iterator (for C++). The
loop control variable is made private by default, even if it is declared outside the
loop.

– The loop control variable must not be modified in the body of the loop.

– The limit against which the loop control variable is compared against, to determine
the truth of the termination condition, must be loop invariant.

● Counter-example of a filtering data loop:

<C> G. Barlas, 2015 22

Canonical form
● Loop control variable operations are also limited:

● break, goto and throw are not allowed to transfer control outside
the loop.

● Exiting the program from within the loop is allowed.

<C> G. Barlas, 2015 23

The „parallel for“ directive

● The #pragma omp parallel for directive is actually a shortcut for:

#pragma omp parallel

{

#pragma omp for

for(....

}

● This has implication about what exactly #pragma omp parallel
actually does.

● The same parallel construct can be populated by other work sharing
constructs, such as sections and tasks.

<C> G. Barlas, 2015 24

Data dependencies

● Assuming we have a loop of the form:

● There are four different ways that S1 and S2 are
connected, based on whether they are reading of
writing to x.

● A problem exists if the dependence crosses loop
iterations : loop-carried dependence.

<C> G. Barlas, 2015 25

Dependence Types

● Flow dependence : RAW

● Anti-flow dependence : WAR

<C> G. Barlas, 2015 26

Dependence Types (cont.)

● Output dependence : WAW

● Input dependence : RAR

<C> G. Barlas, 2015 27

Flow Dependence : Reduction,
Induction Variables

● Example:

● caused by reduction variable sum.

● caused by induction variable v.

● caused by induction variable v.

● Induction variable : affine function of the loop variable.

<C> G. Barlas, 2015 28

Reduction, Induction Variables Fix

● Reduction variables : use a reduce clause.

● Induction variables : use affine function directly.

<C> G. Barlas, 2015 29

Flow Dependence : Loop Skewing

● Another technique involves the rearrangement of the
loop body statements. Example with :

● Solution: make sure the statements that consume the
calculated values that cause the dependence, use
values generated during the same iteration.

<C> G. Barlas, 2015 30

Flow Dependence : Loop Skewing (2)

<C> G. Barlas, 2015 31

Iteration Space Dependency Graph
● ISDG is made up of nodes that represent an single execution

of the loop body, and edges that represent dependencies.

● Example:

<C> G. Barlas, 2015 32

Flow Dependencies : Partial
Parallelization

● In the previous example, the j-loop can be
parallelized, but the i-loop has to be run
sequentially.

<C> G. Barlas, 2015 33

Flow Dependencies : Refactoring

● Refactoring refers to rewriting of the loop(s) so that
parallelism can be exposed.

● The ISDG for the following example:

<C> G. Barlas, 2015 34

Flow Dependencies : Refactoring (2)

● Diagonal sets can be executed in parallel:

<C> G. Barlas, 2015 35

Flow Dependencies : Fissioning

● Fissioning means breaking the loop apart into a
sequential and a parallelizable part. Example:

Actually a case of
reduction!

<C> G. Barlas, 2015 36

Flow Dependencies : Algorithm
Change

● If everything else fails, switching the algorithm
maybe the answer.

● For example, the Fibinacci sequence:

 can be parallelized via Binet's formula:

<C> G. Barlas, 2015 37

Antidependecies
● Example:

● The problem can be solved if we can prevent the „corruption“
of the a[i+1] values prior to the calculation of a[i].

● Solution : save them! Q.: Is this a good idea every time?

<C> G. Barlas, 2015 38

Nested Loops
● As of OpenMP 3.0, perfectly nested loops can be parallelized in

unison.

● The collapse clause instructs OpenMP how many loops to
convert to a single parallel one.

● Example, matrix multiplication:

● Q. : could we do a modification that would allow collapse(3)?

<C> G. Barlas, 2015 39

Loop Scheduling

● The way a for loop is partitioned between a team of threads can be
controlled.

● These are the available scheduling options:
– static

– dynamic

– guided

– auto : any of the above

● Each option can be accompanied by an optional chunk_size
parameter, that controls the granularity of the schedule.

● Controlling the schedule can be critical if the iterations are not identical in
execution cost.

<C> G. Barlas, 2015 40

static schedule
● N iterations are broken up into equal pieces of
chuck_size, and assigned in a round-robin
fashion to the p threads.

● chunk_size defaults to

<C> G. Barlas, 2015 41

dynamic schedule
● N iterations are broken up into equal pieces of
chuck_size, and assigned in a first-come-first-
served basis to the p threads.

● Very good candidate for load balancing.
● But, it has a high coordination cost.

<C> G. Barlas, 2015 42

guided schedule
● First-come-first-served assignment of iterations, but the

partitioning is uneven.

● Each time a group is to be assigned, its size is calculated by
the formula:

<C> G. Barlas, 2015 43

Controlling the schedule
● By setting the OMP_SCHEDULE environmental variable. Setting

affects all OpenMP programs that will run afterwards. Examples:

export OMP_SCHEDULE="static,1"

export OMP_SCHEDULE="guided"

● By using the omp_set_schedule function. Syntax:

void omp_set_schedule(omp_sched_t kind,

 int chunk_size);

● Where kind is one of:

– omp_sched_static

– omp_sched_dynamic

– omp_sched_guided

– omp_sched_auto

<C> G. Barlas, 2015 44

Controlling the schedule (cont.)
● By the schedule clause schedule. Syntax:

#pragma omp parallel for schedule(

 static | dynamic |

 guided | auto | runtime

 [, chunk_size])

● The runtime option delegates the scheduling
decision for the execution of the program, where a
previous setting (e.g. via OMP_SCHEDULE) can be
inspected for suggestions. This is exclusive to the
schedule clause only.

<C> G. Barlas, 2015 45

How to select a schedule option

● static : If iterations are „homogeneous“

● dynamic : If execution cost varies

● guided : if execution cost varies and the number of
iterations is too high.

● If in doubt, set:

<C> G. Barlas, 2015 46

How to select a schedule option
● And use a script similar to:

#!/bin/bash

File : schedule_script.sh

for scheme in static dynamic guided

do

 for chunk in 1 2 4 8 16 32

 do

 export OMP_SCHEDULE="${scheme},${chunk}"

 echo $OMP_SCHEDULE `/usr/bin/time -o tmp.log -p $1
>/dev/null ; head -n 1 tmp.log | gawk '{print $2}' ` >> $2

 done

done

<C> G. Barlas, 2015 47

Task Parallelism
● The sections directive can be used to setup individual work

items that will be executed by threads. Their relative order of
execution (or by which thread it is done) is unknown.

<C> G. Barlas, 2015 48

The section/sections directives

● The individual work items are contained in blocks
decorated by section directives:

<C> G. Barlas, 2015 49

Example: ProducersConsumers in
OpenMP

● OpenMP provides a binary mutex type, but using Qt
classes is more convenient.

● To combine Qt and OpenMP, one just has to add the
following lines in a .pro file:

 QMAKE_CXXFLAGS += -fopenmp

 QMAKE_LFLAGS += -fopenmp

● The producers-consumers pattern can be implemented by
placing each producer and consumer part in a section
block.

<C> G. Barlas, 2015 50

Integration using Prod.Cons.
main() function

automatic variables

Fine-tuning
variable access.
Not everything

should be shared.

J is the
number of

slices to use

Using semaphores
to manage the buffer

<C> G. Barlas, 2015 51

Consumers Part

End of section
block

<C> G. Barlas, 2015 52

Consumer code

● Complete code available online.

All critical variables passed
by reference

Typical consumer
Sequence, using

semaphores

<C> G. Barlas, 2015 53

The task directive
● Tasks in OpenMP are entities consisting of:

– Code : a block of statements designated to be executed concurrently.

– Data : a set of variables/data owned by the task (e.g. local variables)

– Thread Reference : references the thread (if any) executing the task

● OpenMP performs two activities related to tasks:
– Packaging : creating a structure to describe a task entity

– Execution : assigning a task to a thread

● The task directive decouples the two activities which are joint
together in the case of the section directive.

● This way, tasks can be dynamically created and executed
asynchronously.

<C> G. Barlas, 2015 54

Example

● Traversing a linked list using multiple threads:

Only one of the team threads
executes the following

statement/block.

<C> G. Barlas, 2015 55

The task directive clauses
● The task directive can lead to the creation of too many tasks.

● if(scalar-expression) : if the expression evaluates to 0, the generated task
becomes undeferred, i.e. the current task is suspended, until the generated task
completes execution. The generated task may be executed by a different thread. An
undeferred task that is executed immediately by the thread that generated it, is called
an included task.

● final(scalar-expression) : when the expression evaluates to true, the task and
all its child tasks (i.e. other tasks that can be generated by its execution), become final
and included. This means that a task and all its descendants, will be executed by a
single thread.

● untied : a task is by-default tied to a thread : if it gets suspended, it will wait for the
particular thread to run it again, even if there are other idle threads. This, in principle,
creates better CPU cache utilization. If the untied clause is given, a task may resume
execution on any free thread.

● mergeable :a merged task is a task that shares the data environment of the task that
generated it. This clause may cause OpenMP to generate a merged task out of an
undeferred task.

<C> G. Barlas, 2015 56

task „running wild“ example

Arbitrary threshold.

fib(40) takes 1 sec with if clause, and 108 sec without!
Second task pragma

can be removed
to avoid leaving

the parent task idle

<C> G. Barlas, 2015 57

Synchronization Constructs

● critical : allows only one thread at a time, to enter the structured block
that follows. The syntax involves an optional identifier:

#pragma omp critical [(identifier)]

{

 // structured block

}

● The identifier allows the establishment of named critical sections. All
critical directives without an identifier are assumed to have the same name,
and using the same mutex.

● atomic : this is a lightweight version of the critical construct. Only a
single statement (not a block) can follow.

<C> G. Barlas, 2015 58

Synchronization Constructs (cont.)
● Allowed statements for atomic:

 x++;

 x--;

 ++x;

 --x;

 x binop= expr;

 x = x binop expr;

 x = expr binop x;

where x has to be a variable of scalar type and binop can be one of

+, *, -, /, &, ^, |, << , >>

and expr is a scalar expression.

● Caution should be used in the calculation of the expr above. In the following example:

#pragma omp atomic

 x += y++;

the update to y is not atomic.

<C> G. Barlas, 2015 59

Synchronization Constructs (cont.)

● master, single : both force the execution of the
following structured block by a single thread. There is a
significant difference : single implies a barrier on exit
from the block.

● The master can be used for I/O operations.

● barrier : blocks until all team threads reach that point.

● taskwait : applies to a team of tasks. Blocks until all
child tasks terminate.

● ordered : used inside a parallel for, to ensure that a
block will be executed as if in sequential order.

<C> G. Barlas, 2015 60

master Example

<C> G. Barlas, 2015 61

taskwait Example
● Post-order tree traversal:

<C> G. Barlas, 2015 62

ordered Example

ordered clause
is required

<C> G. Barlas, 2015 63

The flush directive

● The flush directive is used as a memory barrier. It makes a
thread's view of certain variables, consistent with main memory.

● All memory operations, initiated before the flush, must complete
before the flush can complete, i.e. the modifications have to
propagate from the cache/registers to main memory.

● All operations that follow the flush directive cannot commence
until the flush is complete. Access to shared variables after the
flush, requires fresh access to main memory.

● The benefit of using flush is that we do not have to rely on the
execution platform for proper memory consistency.

<C> G. Barlas, 2015 64

flush Example

<C> G. Barlas, 2015 65

Thread Safety

● Thread-safe functions are functions that can be called
concurrently from multiple threads without any ill-effects to the
program.

● Often confused with reentrant functions.
● A function can be reentrant, or thread-safe, or both, or neither of

the two.
● A reentrant function can be interrupted and called again (re-

entered) before the previous calls are complete.
● Thread-safe function provide linearizable access to shared

data.

<C> G. Barlas, 2015 66

Reentrant Functions
● The conditions that need to be met for a function to be reentrant are:

– The function should not use static or global data. Global data may be accessed (e.g.
hardware status registers) but they should not be modified unless atomic operations are
used.

– In the case of an object method, either the method is an accessor method (getter), or it
is a mutator (setter) method, in which case the object should be modified inside a critical
section.

– All data required by the function should be provided by the caller. If a program calls a
function multiple times, with the same arguments, it is the responsibility of the caller to
ensure that the calls are properly done. For example, the qsort_r C-library function is a
reentrant implementation of the quicksort algorithm. If two threads call this function with
the same input array, the results cannot be predicted:

– The function does not return pointers to static data. If an array needs to be returned, it
can be, either, dynamically allocated, or, provided by the caller.

– The function does not call any non-reentrant functions.

– The function does not modify its code, unless private copies of the code are used in
each invocation.

<C> G. Barlas, 2015 67

CPU caches

● CPU caches are organized in cache lines, that hold
consecutive memory locations in an effort to take
advantage of temporal and spatial locality.

● A typical size for cache lines is 64 bytes. Each cache
line is associated with an address (where did the data
come from) and a state.

● Multicore CPUs usually employ a coherency protocol,
i.e. a set of rules for how shared data, kept at disjoint
caches, are maintained in a consistent state.

<C> G. Barlas, 2015 68

The MESI Model

A simple such protocol is MESI, that employs four states:
– Modified : the CPU has recently changed part of the cache line, and the cache

line holds the only up-to-date value of the corresponding item. No other CPU
can hold copies of these data, so the CPU can be considered the owner of the
data. The pending changes are supposed to be written back to the main
memory according to the rules of the CPU architecture.

– Exclusive : similar to the modified state, in that the CPU is considered the
owner of the data. No change has been applied though. The main memory and
the cache hold identical values.

– Shared : at least one more cache holds a copy of the data. Changes to the data
can only be performed after coordination with the other CPUs holding copies.

– Invalid : represents an empty cache line. It can be used to hold new data from
the main memory.

<C> G. Barlas, 2015 69

An example with 2 threads

What happens to Core 1 cache
when Core 0 changes x[0]?

<C> G. Barlas, 2015 70

False sharing

● False sharing : sharing cache lines without actually
sharing data.

● How to fix it:
– Pad the data

– Change the mapping of data to cores

– Use private/local variables

<C> G. Barlas, 2015 71

Padding the data

● Original

● Padded:

● Can kill cache effectiveness.
● Wastes memory.

<C> G. Barlas, 2015 72

Data mapping change

<C> G. Barlas, 2015 73

Using private variables

<C> G. Barlas, 2015 74

Using a private variable for matrix
multiplication

● But how severe is the false sharing problem to even consider it?

<C> G. Barlas, 2015 75

Matrix Multiplication Test

<C> G. Barlas, 2015 76

A Case Study : Sorting in OpenMP

Sequential alg.

<C> G. Barlas, 2015 77

A Case Study : Sorting in OpenMP (2)

● The two for loops cannot be collapsed. Why?

<C> G. Barlas, 2015 78

OpenMP Bottomup mergesort

● It takes only one line to turn the sequential program
into a multitheaded one:

<C> G. Barlas, 2015 79

OpenMP TopDown Mergesort

● Sequential recursive function. mergeList always copies the
sorted data back to the original array. Front-end function is not
shown.

<C> G. Barlas, 2015 80

Topdown, multithreaded frontend

<C> G. Barlas, 2015 81

Topdown, multithreaded recursive

<C> G. Barlas, 2015 82

Limiting the number of tasks

<C> G. Barlas, 2015 83

A more effective limit on the number
of tasks

<C> G. Barlas, 2015 84

Results

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

