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Objectives

● Learn how to use OpenMP compiler directives to introduce concurrency in 
a sequential program.

● Learn the most important OpenMP #pragma directives and associated 
clauses, for controlling the concurrent constructs generated by the 
compiler.

● Understand which loops can be parallelized with OpenMP directives.
● Address the dependency issues that OpenMP-generated threads face, 

using synchronization constructs. 
● Learn how to use OpenMP to create function-parallel programs.
● Learn how to write thread-safe functions.
● Understand the issue of cache-false sharing and learn how to eliminate it.
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Introduction

● The decomposition of a sequential program into 
components that can execute in parallel is a tedious 
enterprise.

● OpenMP has been designed to alleviate much of the effort 
involved, by accommodating the incremental conversion of 
sequential programs into parallel ones, with the assistance 
of the compiler. 

● OpenMP relies on compiler directives for decorating 
portions of the code that the compiler will attempt to 
parallelize.
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OpenMP History

● OpenMP : Open Multi-Processing is an API for shared-memory 
programming. 

● OpenMP was specifically designed for parallelizing existing sequential 
programs.

● Uses compiler directives and a library of functions to support its operation.
● OpenMP v.1 was published in 1998.
● OpenMP v.4.0 was published in 2013.
● Standard controlled by the OpenMP Architecture Review Board (ARB).
● GNU C support:

– GCC 4.7 supports OpenMP 3.1 specification

– GCC 4.9 supports OpenMP 4.0.
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OpenMP Paradigm

● OpenMP programs are Globally Sequential, Locally 
Parallel.

● Programs follow the fork-join paradigm:
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OpenMP Essential Definitions
● Structured block : an executable statement or a compound block, 

with a single point of entry and a single point of exit.
● Construct : an OpenMP directive and the associated statement, 

for-loop or structured block that it controls.
● Region : all code encountered during the execution of a construct, 

including any called functions.
● Parallel region : a region executed simultaneously by multiple 

threads.
● A region is dynamic but a construct is static.
● Master thread : the thread executing the sequential part of the 

program and spawning the child threads.
● Thread team : a set of threads that execute a parallel region.
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„Hello World“ in OpenMP

●Can you match some of the previous definitions with parts of this 
program?
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„Hello World“ Sequence Diagram
● One of the possible execution sequences:
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#pragma directives

● Pragma directives allow a programmer to access compiler-
specific preprocessor extensions.

● For example, a common use of pragmas, is in the management 
of include files. E.g.

#pragma once

● Pragma directives in OpenMP can have a number of optional 
clauses, that modify their behavior.

● In the previous example the clause is num_threads(numThr)

● Compilers that do not support certain pragma directives, ignore 
them.
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Thread Team Size Control

● Universally: via the OMP_NUM_THREADS environmental 
variable:

$ echo ${OMP_NUM_THREADS}  # to query the value

$ export OMP_NUM_THREADS=4 # to set it in BASH

● Program level : via the omp_set_number_threads function, 
outside an OpenMP construct.

● Pragma level : via the num_threads clause.

● The omp_get_num_threads call returns the active threads in 
a parallel region. If it is called in a sequential part it returns 1.
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Variable Scope

● Outside the parallel regions, normal scope rules apply. 
● OpenMP specifies the following types of variables:

– Shared : all variables declared outside a parallel region are by default shared. 
That does not mean that they are in anyway "protected".

– Private : all variables declared inside a parallel region are allocated in the run-
time stack of each thread. So we have as many copies of these variables as the 
size of the thread team. Private variables are destroyed upon the termination of a 
parallel region.

– Reduction : a reduction variable gets individual copies for each thread running 
the corresponding parallel region. Upon the termination of the parallel region, an 
operation is applied to the individual copies (e.g. summation) to produce the 
value that will be stored in the shared variable.

● The default scope of variables can be modified by clauses in the pragma 
lines. 
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Example : Function Integration
● The sequential implementation:

double integrate (double st, double en, int div, double (*f) (double))
{
  double localRes = 0;
  double step = (en - st) / div;
  double x;
  x = st;
  localRes = f (st) + f (en);
  localRes /= 2;
  for (int i = 1; i < div; i++)
    {
      x += step;
      localRes += f (x);
    }
  localRes *= step;

  return localRes;
}
//---------------------------------------
int main (int argc, char *argv[])
{
  . . . 
  double finalRes = integrate (start, end, divisions, testf);

  cout << finalRes << endl;
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Parallel Function Integration
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OpenMP V.0 : Manual partitioning
● Given the ID of each thread, we can calculate:

Race condition!
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OpenMP V.1 : Removing the race cond.
● Giving each thread, its own private storage. Sequential 

reduction is required afterwards.
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OpenMP V.2 : Implicit Partitioning 
with locking

● Moving the parallel construct inside the integrate() function. The 
main remains the same as the sequential program.

This statement 
is also different

from the sequential 
version.

Can we eliminate x
from here?
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OpenMP V.3 : Implicit Partitioning 
with reduction

● Most efficient way to consolidate results.
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Reduction clause
● The reduction clause syntax:

reduction( reduction_id : variable_list)

where variable_list is a comma-separated list of variable 
identifiers, and reduction_id is one of the following binary 
arithmetic and boolean operators :

+, *, -, & , &&, |, || , ^, max, min

● Example:
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Reduction clause (2)
● The initial values of a reduction variable's private copies 

depend on the operator used:
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Scope modifying clauses

● shared : the default behavior for variables declared outside of a parallel block. 
It needs to be used only if default(none) is also specified.

● reduction : a reduction operation is performed between the private copies 
and the „outside“' object. The final value is stored in the „outside“' object.

● private : creates a separate copy of a variable for each thread in the team. 
Private variables are not initialized, so one should not expect to get the value 
of the variable declared outside the parallel construct.

● firstprivate : behaves the same way as the private clause, but the 
private variable copies are initialized to the value of the „outside“' object.

● lastprivate : behaves the same way as the private clause, but the 
thread finishing the last iteration of the sequential block (for the final value of 
the loop control variable that produces an iteration), copies the value of its 
object to the „outside“' object. 

● threadprivate : creates thread-specific, persistent storage (i.e. for the 
duration of the program) for global data.
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Loop Level Parallelism
● A for-loop has to satisfy certain conditions, which in OpenMP jargon are 

called the canonical form:
– The loop control variable has to be an integer type (signed or unsigned), a pointer 

type (e.g. base address of an array), or a random access iterator (for C++). The 
loop control variable is made private by default, even if it is declared outside the 
loop.

– The loop control variable must not be modified in the body of the loop. 

– The limit against which the loop control variable is compared against, to determine 
the truth of the termination condition, must be loop invariant.

● Counter-example of a filtering data loop:
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Canonical form
● Loop control variable operations are also limited:

● break, goto and throw are not allowed to transfer control outside 
the loop.

● Exiting the program from within the loop is allowed.
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The „parallel for“ directive

● The #pragma omp parallel for directive is actually a shortcut for:

#pragma omp parallel

{

#pragma omp for

for(....

}

● This has implication about what exactly #pragma omp parallel 
actually does.

● The same parallel construct can be populated by other work sharing 
constructs, such as sections and tasks.
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Data dependencies

● Assuming we have a loop of the form:

● There are four different ways that S1 and S2 are 
connected, based on whether they are reading of 
writing to x.

● A problem exists if the dependence crosses loop 
iterations : loop-carried dependence.
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Dependence Types

● Flow dependence : RAW

● Anti-flow dependence : WAR
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Dependence Types (cont.)

● Output dependence : WAW

● Input dependence : RAR
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Flow Dependence : Reduction, 
Induction Variables

● Example:

●                 caused by reduction variable sum.

●                 caused by induction variable v.

●                 caused by induction variable v.

● Induction variable : affine function of the loop variable.
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Reduction, Induction Variables Fix

● Reduction variables : use a reduce clause.

● Induction variables : use affine function directly.
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Flow Dependence : Loop Skewing

● Another technique involves the rearrangement of the 
loop body statements. Example with :

● Solution: make sure the statements that consume the 
calculated values that cause the dependence, use 
values generated during the same iteration.
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Flow Dependence : Loop Skewing (2)
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Iteration Space Dependency Graph
● ISDG is made up of nodes that represent an single execution 

of the loop body, and edges that represent dependencies.

● Example:
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Flow Dependencies : Partial 
Parallelization

● In the previous example, the j-loop can be 
parallelized, but the i-loop has to be run 
sequentially.
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Flow Dependencies : Refactoring

● Refactoring refers to rewriting of the loop(s) so that 
parallelism can be exposed.

● The ISDG for the following example:
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Flow Dependencies : Refactoring (2)

● Diagonal sets can be executed in parallel:
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Flow Dependencies : Fissioning

● Fissioning means breaking the loop apart into a 
sequential and a parallelizable part. Example:

Actually a case of
reduction!



<C> G. Barlas, 2015 36

Flow Dependencies : Algorithm 
Change

● If everything else fails, switching the algorithm 
maybe the answer. 

● For example, the Fibinacci sequence:

    can be parallelized via Binet's formula:
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Antidependecies
● Example:

● The problem can be solved if we can prevent the „corruption“ 
of the a[i+1] values prior to the calculation of a[i].

● Solution : save them!  Q.: Is this a good idea every time?
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Nested Loops
● As of OpenMP 3.0, perfectly nested loops can be parallelized in 

unison.

● The collapse clause instructs OpenMP how many loops to 
convert to a single parallel one.

● Example, matrix multiplication:

● Q. : could we do a modification that would allow collapse(3)?



<C> G. Barlas, 2015 39

Loop Scheduling

● The way a for loop is partitioned between a team of threads can be 
controlled. 

● These are the available scheduling options:
– static

– dynamic 

– guided

– auto : any of the above

● Each option can be accompanied by an optional chunk_size 
parameter, that controls the granularity of the schedule.

● Controlling the schedule can be critical if the iterations are not identical in 
execution cost.
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static schedule
● N iterations are broken up into equal pieces of 
chuck_size, and assigned in a round-robin 
fashion to the p threads.

● chunk_size defaults to 
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dynamic schedule
● N iterations are broken up into equal pieces of 
chuck_size, and assigned in a first-come-first-
served basis to the p threads.

● Very good candidate for load balancing. 
● But, it has a high coordination cost.
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guided schedule
● First-come-first-served assignment of iterations, but the 

partitioning is uneven.

● Each time a group is to be assigned, its size is calculated by 
the formula:
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Controlling the schedule
● By setting the OMP_SCHEDULE environmental variable. Setting 

affects all OpenMP programs that will run afterwards. Examples:

export OMP_SCHEDULE="static,1" 

export OMP_SCHEDULE="guided"

● By using the omp_set_schedule function.  Syntax:

void omp_set_schedule(omp_sched_t kind, 

                     int chunk_size);   

● Where kind is one of:

– omp_sched_static

– omp_sched_dynamic

– omp_sched_guided

– omp_sched_auto
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Controlling the schedule (cont.)
● By the schedule clause schedule. Syntax:

#pragma omp parallel for schedule(

              static | dynamic |

              guided | auto | runtime 

              [, chunk_size ] ) 

●  The runtime option delegates the scheduling 
decision for the execution of the program, where a 
previous setting (e.g. via OMP_SCHEDULE) can be 
inspected for suggestions. This is exclusive to the 
schedule clause only. 
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How to select a schedule option

● static : If iterations are „homogeneous“

● dynamic : If execution cost varies

● guided : if execution cost varies and the number of 
iterations is too high.

● If in doubt, set:
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How to select a schedule option
● And use a script similar to:

#!/bin/bash

# File : schedule_script.sh

for scheme in static dynamic guided

do

   for chunk in 1 2 4 8 16 32 

      do

        export OMP_SCHEDULE="${scheme},${chunk}"

        echo $OMP_SCHEDULE `/usr/bin/time -o tmp.log -p $1 
>/dev/null ; head -n 1 tmp.log | gawk '{print $2}' ` >> $2

      done

done
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Task Parallelism
● The sections directive can be used to setup individual work 

items that will be executed by threads. Their relative order of 
execution (or by which thread it is done) is unknown.
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The section/sections directives

● The individual work items are contained in blocks 
decorated by section directives:
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Example: ProducersConsumers in 
OpenMP

● OpenMP provides a binary mutex type, but using Qt 
classes is more convenient. 

● To combine Qt and OpenMP, one just has to add the 
following lines in a .pro file:

    QMAKE_CXXFLAGS += -fopenmp

    QMAKE_LFLAGS += -fopenmp

● The producers-consumers pattern can be implemented by 
placing each producer and consumer part in a section 
block.
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Integration using Prod.Cons.
main() function

automatic variables

Fine-tuning
variable access.
Not everything 

should be shared.

J is the 
number of

slices to use

Using semaphores
to manage the buffer
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Consumers Part

End of section
block
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Consumer code

● Complete code available online.

All critical variables passed
by reference

Typical consumer
Sequence, using 

semaphores
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The task directive
● Tasks in OpenMP are entities consisting of:

– Code : a block of statements designated to be executed concurrently.

– Data : a set of variables/data owned by the task (e.g. local variables)

– Thread Reference : references the thread (if any) executing the task 

● OpenMP performs two activities related to tasks:
– Packaging : creating a structure to describe a task entity

– Execution : assigning a task to a thread

● The task directive decouples the two activities which are joint 
together in the case of the section directive.

● This way, tasks can be dynamically created and executed 
asynchronously.
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Example

● Traversing a linked list using multiple threads:

Only one of the team threads
executes the following

statement/block.
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The task directive clauses
● The task directive can lead to the creation of too many tasks.

● if(scalar-expression) : if the expression evaluates to 0, the generated task 
becomes undeferred, i.e. the current task is suspended, until the generated task 
completes execution. The generated task may be executed by a different thread. An 
undeferred task that is executed immediately by the thread that generated it, is called 
an included task.

● final(scalar-expression) :  when the expression evaluates to true, the task and 
all its child tasks (i.e. other tasks that can be generated by its execution), become final 
and included. This means that a task and all its descendants, will be executed by a 
single thread.

● untied : a task is by-default tied to a thread : if it gets suspended, it will wait for the 
particular thread to run it again, even if there are other idle threads. This, in principle, 
creates better CPU cache utilization. If the untied clause is given, a task may resume 
execution on any free thread.

● mergeable :a merged task is a task that shares the data environment of the task that 
generated it. This clause may cause OpenMP to generate a merged task out of  an 
undeferred task.
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task „running wild“ example

Arbitrary threshold.

fib(40) takes 1 sec with if clause, and 108 sec without!
Second task pragma

can be removed
to avoid leaving

the parent task idle
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Synchronization Constructs

● critical : allows only one thread at a time, to enter the structured block 
that follows. The syntax involves an optional identifier:

#pragma omp critical [ ( identifier ) ]

{

   // structured block

}

● The identifier allows the establishment of named critical sections. All 
critical directives without an identifier are assumed to have the same name, 
and using the same mutex.

● atomic : this is a lightweight version of the critical construct. Only a 
single statement (not a block) can follow.
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Synchronization Constructs (cont.)
● Allowed statements for atomic:

     x++;

     x--;

     ++x;

     --x;

     x binop= expr;

     x = x binop expr;

     x = expr binop x;

where x has to be a variable of scalar type and binop can be one of  

+, *, -, /, &, ^, |, << , >>

and expr is a scalar expression.

● Caution should be used in the calculation of the expr above. In the following example:

#pragma omp atomic

   x += y++;

the update to y is not atomic.
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Synchronization Constructs (cont.)

● master, single : both force the execution of the 
following structured block by a single thread. There is a 
significant difference : single implies a barrier on exit 
from the block. 

● The master can be used for I/O operations. 

● barrier :  blocks until all team threads reach that point.

● taskwait : applies to a team of tasks. Blocks until all 
child tasks terminate.

● ordered : used inside a parallel for, to ensure that a 
block will be executed as if in sequential order.
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master Example
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taskwait Example
● Post-order tree traversal:
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ordered Example

ordered clause
is required



<C> G. Barlas, 2015 63

The flush directive

● The flush directive is used as a memory barrier. It makes a 
thread's view of certain variables, consistent with main memory.

● All memory operations, initiated before the flush, must complete 
before the flush can complete, i.e. the modifications have to 
propagate from the cache/registers to main memory. 

● All operations that follow the flush directive cannot commence 
until the flush is complete. Access to shared variables after the 
flush, requires fresh access to main memory.

● The benefit of using flush is that we do not have to rely on the 
execution platform for proper memory consistency.
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flush Example
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Thread Safety

● Thread-safe functions are functions that can be called 
concurrently from multiple threads without any ill-effects to the 
program.

● Often confused with reentrant functions.
● A function can be reentrant, or thread-safe, or both, or neither of 

the two.
● A reentrant function can be interrupted and called again (re-

entered) before the previous calls are complete.
● Thread-safe function provide linearizable access to shared  

data.
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Reentrant Functions
● The conditions that need to be met for a function to be reentrant are:

– The function should not use static or global data. Global data may be accessed (e.g. 
hardware status registers) but they should not be modified unless atomic operations are 
used. 

– In the case of an object method, either the method is an accessor method (getter), or it 
is a mutator (setter) method, in which case the object should be modified inside a critical 
section.

– All data required by the function should be provided by the caller. If a program calls a 
function multiple times, with the same arguments, it is the responsibility of the caller to 
ensure that the calls are properly done. For example, the qsort_r C-library function is a 
reentrant implementation of the quicksort algorithm. If two threads call this function with 
the same input array, the results cannot be predicted:

– The function does not return pointers to static data. If an array needs to be returned, it 
can be, either, dynamically allocated, or, provided by the caller. 

– The function does not call any non-reentrant functions.

– The function does not modify its code, unless private copies of the code are used in 
each invocation. 
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CPU caches

● CPU caches are organized in cache lines, that hold 
consecutive memory locations in an effort to take 
advantage of temporal and spatial locality.

● A typical size for cache lines is 64 bytes. Each cache 
line is associated with an address (where did the data 
come from) and a state.

● Multicore CPUs usually employ a coherency protocol, 
i.e. a set of rules for how shared data, kept at disjoint 
caches, are maintained in a consistent state.
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The MESI Model

A simple such protocol is MESI, that employs four states:
– Modified : the CPU has recently changed part of the cache line, and the cache 

line holds the only up-to-date value of the corresponding item. No other CPU 
can hold copies of these data, so the CPU can be considered the owner of the 
data. The pending changes are supposed to be written back to the main 
memory according to the rules of the CPU architecture.

– Exclusive : similar to the modified state, in that the CPU is considered the 
owner of the data. No change has been applied though. The main memory and 
the cache hold identical values.

– Shared : at least one more cache holds a copy of the data. Changes to the data 
can only be performed after coordination with the other CPUs holding copies. 

– Invalid : represents an empty cache line. It can be used to hold new data from 
the main memory.
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An example with 2 threads

What happens to Core 1 cache
when Core 0 changes x[0]?
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False sharing

● False sharing : sharing cache lines without actually 
sharing data. 

● How to fix it:
– Pad the data

– Change the mapping of data to cores

– Use private/local variables
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Padding the data

● Original

● Padded:

● Can kill cache effectiveness.
● Wastes memory.
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Data mapping change
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Using private variables
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Using a private variable for matrix 
multiplication

● But how severe is the false sharing problem to even consider it?
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Matrix Multiplication Test
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A Case Study : Sorting in OpenMP

Sequential alg.
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A Case Study : Sorting in OpenMP (2)

● The two for loops cannot be collapsed. Why?
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OpenMP Bottomup mergesort

● It takes only one line to turn the sequential program 
into a multitheaded one:
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OpenMP TopDown Mergesort

● Sequential recursive function. mergeList always copies the 
sorted data back to the original array. Front-end function is not 
shown.
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Topdown, multithreaded frontend
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Topdown, multithreaded recursive
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Limiting the number of tasks
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A more effective limit on the number 
of tasks
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Results
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