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Chapter 11 Shared Memory Parallel Computing Using

OpenMP

Preface

Chapter 10 introduced the core concepts of shared memory parallel programming and the basics of
multi-threaded programming using the Pthreads library. It is advisable to read that chapter before
reading this one, because it contains important concepts about multi-threading in general.

This chapter is an introduction to OpenMP in C/C++. All statements about its syntax in these
notes are speci�c to C/C++. Whereas Pthreads requires the programmer to explicitly manage
user-de�ned threads, OpenMP removes some of the burden from the programmer, making it easier
to parallelize existing sequential code, and to do so in an incremental way.

Concepts Covered

Shared memory parallelism,

threads,

tasks,

the OpenMP API

11.1 Introduction

It is hard to use a threading library to decompose a sequential program into threads that run
in parallel without knowing a great deal about how to do this correctly. If some of the tasks of
multithreading could be handled by the compiler, it would be make it possible to convert serial code
to parallel code without needing to know all of the details of a library's API.

In the early 1990's di�erent hardware vendors provided their own ways to add parallelism to se-
quential programs. A standard was needed. By 1997, a group of major computer hardware and
software vendors formed the OpenMP Architecture Review Board to standardize the means by
which programmers could partially convert sequential programs into multi-threaded programs with
the assistance of the compiler. That year they released the �rst version of the OpenMP standard
for FORTRAN programs, and a year later, a version for C/C++. It was designed to make it possible

for programmers to incrementally evolve a sequential program into a parallel program. The OpenMP
speci�cation has been revised several times since its creation, with more features being added over
the years. These notes describe OpenMP 4.5.

OpenMP is an open API for writing shared-memory parallel programs written in C/C++ and
FORTRAN. Parallelism is achieved exclusively through the use of threads. It is portable, scalable,
and supported on a wide variety of multiprocessor/core, shared memory architectures, whether they
are UMA or NUMA. Because it is an open API, it has implementations on many platforms, many
of which are open source, such as all of those provided by GNU under various GNU Public Licenses.
It makes it possible for programmers to incrementally introduce parallelism based on threads into
sequential programs.

It is important to understand what OpenMP does not do before continuing. OpenMP
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• is not necessarily implemented identically by all vendors;

• is not guaranteed to make the most e�cient use of shared memory;

• is not required to check for data dependencies, data con�icts, race conditions, or deadlocks;

• is not required to check for code sequences that cause a program to be classi�ed as non-
conforming;

• does not guarantee that input or output to the same �le by di�erent threads is synchronized
when they run in parallel.

11.2 The Parallel Execution Model

Every OpenMP program begins with a single thread, called the primary , initial , or master
thread, that can fork new threads that run in parallel and that eventually join the master thread;
this is an example of the fork/join paradigm , depicted in Figure 11.1. The master thread is
part of the team of threads that run in parallel. OpenMP distinguishes between the threads and
the work that they do. The work that a threads performs is called a task ; the following sections
elaborate on the task concept.

Figure 11.1: The fork-join model

The join that takes place is in e�ect an implicit synchronization barrier; the master thread continues
executing the code after the parallel task only when all threads have completed executing their
respective tasks.

11.3 The Components of the OpenMP API

The OpenMP API has three primary components:

• Compiler directives. These are preprocessor directives that can be used by programmers
to de�ne and control parallel regions of code.

• Runtime library routines. These are functions from the OpenMP library that can be called
by the program and are then linked into the program;

• Environment variables. These can be used to control the behavior of OpenMP programs.

It is possible to parallelize many sequential programs without using most of the API.
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11.3.1 Basics

Pragmas

OpenMP de�nes a parallel region as a block of code or a single statement that may run in
parallel. Programmers can insert compiler directives called pragmas into their code to identify
parallel regions; these directives instruct the OpenMP run-time library to execute the region in
parallel using two or more threads. Pragmas are a strict subset of compiler directives; all pragmas
are directives but not vice versa (e.g. #define is a directive, not a pragma.) Pragmas always start
with the pragma keyword. For example, a simple pragma is

#pragma omp parallel

which speci�es that the statement or block that follows immediately after it is to be executed by
some number of threads in parallel. Thus,

#pragma omp parallel

{

printf(�Hello World\n�);

}

will cause multiple threads to execute the printf statement in parallel. The default number of
threads will be the number of cores that the compiler detects. The set of threads that are forked
to execute a given parallel region is called a thread team . In Figure 11.1, there are three teams
of threads: those that execute Parallel Task I, those that execute Parallel Task II, and those that
execute Parallel Task III.

Library Routines

Runtime library functions look like ordinary function calls, but they are not part of the native lan-
guage's library; they are part of the OpenMP runtime library. For example, omp_get_thread_num()
is a function that returns the unique integer ID of the thread that calls it. To use these runtime
routines, one needs to include the <omp.h> header �le in the program. Runtime routines can be
used to do many di�erent tasks. Some common ones are:

• Setting and querying the number of threads

• Querying a thread's unique identi�er (thread ID), a thread's ancestor's identi�er, or the thread
team size

• Setting and querying the dynamic threads feature (see below)

• Querying whether it is in a parallel region, and if so, at what level

• Setting and querying nested parallelism (see below)

• Setting, initializing and terminating locks and nested locks

• Querying wall clock time and resolution
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Environment Variables

Environment variables are used to control how parallel code is executed. Some examples of such
control include

• Setting the number of threads

• Specifying how loop iterations are divided

• Binding threads to processors

• Enabling and disabling nested parallelism; setting the maximum levels of nested parallelism

• Enabling and disabling dynamic threads

• Setting thread stack size

• Setting thread wait policy

Dynamic Threads

The API lets the runtime environment dynamically change the number of threads used to execute
parallel regions for more e�cient use of resources, if possible, but implementations may or may
not support this feature. In implementations that support it, there is an environment variable that
controls whether or not it is enabled (see OMP_DYNAMIC). The installed versions of gcc on our network
all support dynamic thread creation.

Nested Parallelism

The API allows the placement of parallel regions inside other parallel regions, but implementations
may or may not support this feature. In implementations that support it, there is an environment
variable that controls whether or not it is enabled (see OMP_NESTED).

I/O

OpenMP does not specify anything about parallel I/O. An implementation may handle this as it
chooses. If every thread uses a di�erent �le or device, there is no signi�cant problem. It up to the
programmer to ensure that I/O is handled correctly.

Tasks

OpenMP makes a distinction between threads and the work that they do. A thread is an
execution unit, like a process. It is an entity that can be scheduled by the operating system
scheduler. The work that a thread performs is called its task . A task is a speci�c instance of
executable code and its data environment, generated when a thread encounters a construct that
causes the creation of tasks, such as a parallel directive. You can think of a task as a chunk of
work to be done. A thread may execute di�erent tasks during its lifetime. When a thread stops
executing one task and starts another, it is called task switching . The converse is also true - a
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task may be executed by di�erent threads before it is completed1. Thus, threads and tasks are
really two di�erent things.

In OpenMP, tasks may be created explicitly or implicitly . The parallel directive causes the
creation of implicit tasks. In contrast, there is a task directive that can be used to create tasks
explicitly, and these naturally are called explicit tasks.

Compiling and Running OpenMP Programs

To use any part of the OpenMP API, one needs to tell the compiler to compile against it. With
gcc, this is done by passing the compile-time �ag -fopenmp. This enables the OpenMP directive
#pragma omp in C/C++. For example:

gcc -fopenmp -o outputfile my_openmp_program.c

is how to compile the program my_openmp_program.c if it has any pragmas in it2. If it also makes
calls to the runtime library, the �ag will arranges for automatic linking of the OpenMP runtime
library to the program, and the program must include the header �le omp.h. If the program does
not use the library, it is not necessary to include the header �le, but there is no downside to doing
so other than slightly longer compile time.

A simple OpenMP/C program to demonstrate this is in Listing 11.1 below.

Listing 11.1: helloworld1_omp.c

#inc lude <s t d l i b . h>
#inc lude <s td i o . h>

in t main ( i n t argc , char ∗argv [ ] )
{

p r i n t f ("\n Before the p a r a l l e l r eg i on . \ n\n" ) ;
# pragma omp p a r a l l e l
{

p r i n t f (" He l lo world\n" ) ;
}
p r i n t f ("\n After the p a r a l l e l r eg i on . \ n" ) ;
r e turn 0 ;

}

If this code is in the �le helloworld1_omp.c, and we want the executable to be stored in helloworld1_omp,
we would compile it as follows:

gcc -o helloworld1_omp helloworld1_omp.c -fopenmp

1
Tied tasks are bound to the threads that start them, whereas untied threads can be assigned to a di�erent

thread.
2The placement of the -f �ag in gcc is �exible - it can appear before or after other �ags or the source code

arguments.
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11.3.2 Some Basic OpenMP Terminology

This is but a tiny fragment of the terms de�ned by the OpenMP standard. It consists of just those
terms that are relevant to the subset of OpenMP described in these notes.

• A task is a speci�c instance of executable code and its data environment, generated when
a thread encounters a task, taskloop, parallel, target, or teams construct or a construct
that combines one or more of these. An explicit task is one created when a thread encounters
a task or taskloop construct. Tasks created when a parallel, target, or teams construct
is encountered are implicit tasks.

• A structured block is an executable statement or a compound block, with a single point of
entry and a single point of exit.

• A construct is an OpenMP directive and the associated structured block that it controls.

• A region is the set of all code encountered during the execution of a construct, including any
called functions. In other words, if a function is called withing a region, the function's code is
also part of the region. A region may also be thought of as the dynamic or runtime extent
of a construct or of an OpenMP library routine. The region encountered during execution of
a construct can change from one run to the next, depending on the data.

� A task region is a region consisting of all code encountered during the execution of a
task. An implicit (explicit) task region is the task region of an implicit (explicit)
task.

� A parallel region is a region executed simultaneously by multiple threads.

• The master thread is the thread executing the sequential part of the program and spawning
the child threads.

• A thread team is a set of threads that execute a parallel region.

11.4 OpenMP Directives

Directives are instructions to the compiler. They do not appear in executable code. Their e�ect,
however, alters the executable code. Technically speaking, when the preprocessor reads a source
code �le and encounters a directive, it causes code to be inserted that usually alters an action that
takes place at run-time. It is too much to have to say this every time when describing what a
directive does. The term �construct� refers to the executable code created by the directive and the
block that follows it, so we will say things like, �when a thread reaches the construct, it does this
or that.� Bear this in mind when reading the rest of this section.

11.4.1 The Structure of a Directive

Every directive in OpenMP has the same form:

#pragma omp <directive-name> [optional clauses] <newline>
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where <directive-name> is replaced by speci�c names such as parallel or section. The clauses
that can follow a directive depend on which directive is named. Directive names are case-sensitive!

The directive must end with a newline character. In other words, this is not correct:

#pragma omp parallel { x = 0; }

because the block is on the same line as the directive. If a directive is inconvenient to type on a
single line, the line can be continued by �escaping� the newline character with a preceding backslash
�\� in the same way that is done in make �les or bash scripts. For example:

#pragma omp parallel shared(num_intervals, pi_estimate) \

private(nthrds, id, local_pi)

is correct as long as after the �\� the newline is typed immediately (no space in between).

11.4.2 The parallel Directive

This is the most important directive to start with because with this one alone you can create
parallelism in your program most easily. When a thread reaches the parallel construct, it forks
multiple threads to execute the parallel region immediately following the directive. This is called
creating a thread team . There are several questions that should come to mind immediately. We
answer them �rst and give examples.

When a thread reaches the directive, is it part of the team that executes the parallel
region?

Yes. The thread that reaches the construct will have the thread ID 0 in the team and will be
considered its master thread.

How many threads are forked?

This question does not have a simple answer. There are controls of varying precedence that de-
termine how many threads are created. We will describe them from highest to lowest precedence,
ignoring the possibilities that (1) the parallel directive has an if-clause, (2) dynamic thread creation
is enabled, and that (3) the process might exceed its maximum thread capacity. We will discuss
these issues after.

1. If there is a num_threads clause, as in

#pragma omp parallel num_threads(8)

then the number of threads will be the value of the argument, which can a positive integer
expression. The clause requires that the expression is enclosed in parentheses. It can be any
expression, such as arraysize/10 for example.
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2. Otherwise, if there is a call to the library function omp_set_num_threads() that has been exe-
cuted prior to reaching the parallel construct, the most recent call to that function determines
how many threads will be in the team. This function expects a positive integer expression.
See Listing 11.2 for an example.

Listing 11.2: helloworld3_omp.c

#inc lude <s t d l i b . h>
#inc lude <s td i o . h>
#inc lude <omp . h>

in t main ( i n t argc , char ∗argv [ ] )
{

i n t default_num_threads = 6 ;

i f ( argc < 2 ) {
p r i n t f ("Usage : %s <num−threads >\n" , argv [ 0 ] ) ;
e x i t ( 1 ) ;

}

i n t num_threads_requested = a t o i ( argv [ 1 ] ) ;
i f ( num_threads_requested < 1 ) {

p r i n t f (" Expected a p o s i t i v e i n t e g e r argument . \ n " ) ;
e x i t ( 1 ) ;

}
i f ( num_threads_requested > 12 ) {

omp_set_num_threads ( num_threads_requested /2 ) ;
}
e l s e {

omp_set_num_threads ( default_num_threads ) ;
}

# pragma omp p a r a l l e l
{

p r i n t f (" He l lo world\n" ) ;
}
re turn 0 ;

}

This can be used to decide the number of threads in the team based on the command line argument.

1. If there is no num_threads clause and no call to omp_set_num_threads(), then the value of
the environment variable OMP_NUM_THREADS determines the team size. If you add the de�nition

OMP_NUM_THREADS=20,10,5

to your environment (by modifying your .bashrc �le for example) then top level parallel
regions will use 20 threads by default, second level regions will use 10, and third level, 5.
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2. Lastly, if none of the above methods exist, then the default is usually the number of cores
that the compiler detects on the computer, but it is an implementation default.

What complicates this answer further is that a parallel directive, as well as other directives, can
have an if-clause . The if-clause can be used to enable or disable a following num_threads clause
or even turn o� multithreading for the following block. If an if-clause is present, it has the highest
precedence. The syntax of the clause for the parallel directive is:

#pragma omp parallel if ( parallel: <boolean-condition> ) [other-clauses]

where <boolean-condition> is replaced by any expression that evaluates to true/false (0, non-zero
in C). Other clauses may follow.

Examples:

• To turn o� multithreading, put a zero for the condition:

#pragma omp parallel if ( parallel: 0)

• To conditionally apply a num_threads clause if some variable named arraysize is greater
than 200 and to turn o� multithreading otherwise:

#pragma omp parallel if ( parallel: arraysize > 200 ) num_threads(20)

Governing all of the previous discussion is that the number of threads speci�ed by any of these
methods is just a request; if the process has used too many thread resources, that request may
not be honored. The details can be found in Section 2.5.1 of the OpenMP speci�cation. The
program in Listing 11.3 shows how the if-clause can be used to decide whether or not to perform
an action in parallel or as a single thread based on input data. It also introduces two more library
routines: omp_get_num_threads(), which returns the number of active threads in a parallel region,
and omp_get_thread_num(), which returns to the calling thread its thread ID.

Listing 11.3: helloworld4_omp.c

#inc lude <s t d l i b . h>
#inc lude <s td i o . h>
#inc lude <omp . h>

in t main ( i n t argc , char ∗argv [ ] )
{

i n t default_num_threads = 6 ;

i f ( argc < 2 ) {
p r i n t f ("Usage : %s <pretend−array−s i z e >\n" , argv [ 0 ] ) ;
e x i t ( 1 ) ;

}

i n t s i z e = a t o i ( argv [ 1 ] ) ;
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i f ( s i z e < 1 ) {
p r i n t f (" Expected a p o s i t i v e i n t e g e r argument . \ n " ) ;
e x i t ( 1 ) ;

}

# pragma omp p a r a l l e l i f ( p a r a l l e l : s i z e > 100) \
num_threads ( default_num_threads )

{
i n t team_size = omp_get_num_threads ( ) ; /∗ get number o f threads ∗/
i n t t i d = omp_get_thread_num ( ) ; /∗ get thread id ∗/
p r i n t f (" He l lo world from thread %d out o f %d threads . \ n" ,

t id , team_size ) ;
}
re turn 0 ;

}

Are there any restrictions on what statements can be in the structured block?

Yes. There cannot be any jumps into the block such as go-tos, and no jumps out of the block. It
must be a single-entry/single-exit block. In addition, it cannot span multiple functions or source
code �les.

11.4.2.1 Sharing Attributes of Variables in parallel Directives

All variables that are declared outside of a parallel construct are shared by default. For example,
in the following code

int x = 0;

#pragma omp parallel

{

x = x + 1;

}

x is shared by all threads that execute the parallel region. This code could cause a race condition
of course.

The parallel directive has clauses that let you control the data-sharing attributes of variables, i.e.,
which variables are shared, which are private to each thread, and which are something else, as you
will soon see. Each of the following clauses3 requires a comma-separated list of variables as its
argument. Each can be repeated any number of times.

• private(list ) declares that the variables in the list are private to each thread in the team.
Each has its own uninitialized copy of that variable.

3There are other clauses not explained here.
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• firstprivate(list ) declares that the variables in the list are private to each thread, and
initializes each of them with the value that the corresponding original variable has when the
construct is encountered.

• shared(list ) declares that the variables in the list are shared by all threads in the team.
There is a single copy of the variable.

• reduction(reduction-identifier: list ) speci�es a reduction operation to be performed
on one or more list items. For each list item, a private copy is created in each thread, which
is initialized with the initializer value of the given reduction-identi�er. (For example, 0 is the
initializer for summation whereas 1 is the initializer for multiplication. In short the identity
element of the operation.) After the end of the region, the original list item is updated with
the values of the private copies using the combiner associated with the reduction-identi�er.
An example will follow below.

There are many restrictions that apply to these clauses; these notes are not intended to replace
reading the speci�cation for all of the nuances regarding their use, such as whether you can list an
element of an array or a member of a struct, or a const-quali�ed variable, etc.

Examples

An example to illustrate the use of the firstprivate clause and the reduction clause follows.

Listing 11.4: reduction_demo.c

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <omp . h>

in t main ( i n t argc , char ∗argv [ ] )
{

i n t x = 2 ;
i n t sum = 0 ;
i n t numthreads ;

i f ( argc < 2 ) {
p r i n t f ("Usage : %s number−of−threads \n" , argv [ 0 ] ) ;
e x i t ( 1 ) ;

}

i f ( 0 >= ( numthreads = a to i ( argv [ 1 ] ) ) ) {
f p r i n t f ( s tde r r , "Number o f threads i s not a p o s i t i v e i n t e g e r . \ n " ) ;
e x i t ( 1 ) ;

}

omp_set_num_threads ( numthreads ) ;
#pragma omp p a r a l l e l f i r s t p r i v a t e ( x ) r educt i on (+:sum)
{

x = x ∗ omp_get_thread_num ( ) ;
i f ( omp_get_thread_num ( ) == 0)

numthreads = omp_get_num_threads ( ) ;
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sum += x ;
}

p r i n t f ("Double the sum of the thread i d s o f %d threads i s %d\n" ,
numthreads , sum ) ;

re turn 0 ;
}

Notes

• firstprivate(x) initializes the copy of x in each spawned thread to its value when the region
is reached, which is 2.

• reduction(+:sum) causes each thread to have its own copy of sum and performs an addition
operation, in this case

sum = sum + x

in each thread. The e�ect is that each threads add the initial value of x to sum, initially 0, so
that its �nal value is numthreads*x.

11.4.3 Worksharing Constructs

Imagine for a moment that you have a parallel region of code such as the following:

#pragma omp parallel

{

/*

stuff to be done in parallel

*/

}

Within such a region, you can specify what work the various threads will perform in a very explicit
way. A worksharing construct is a type of directive that distributes the execution of its associated
region among the members of the thread team that encounters it. Each thread in the team executes
its portion of the region in the context of the implicit task that it was executing when it encounters
the worksharing construct. This means, for example, that it still has access to the same variables
it had before reaching that construct.

There is no implicit barrier at the beginning of a worksharing construct. Threads that encounter it
before others can enter it immediately. On the other hand, there is an implicit barrier at the end

of the construct ; no thread advances past it until all threads complete their tasks.

There are four worksharing constructs:

• loop construct

• sections construct

• single construct
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• workshare construct

The work units in these worksharing constructs are tightly controlled, either by an iteration limit and
limited scheduling, or by a limited number of sections or single regions. Worksharing constructs
were designed mostly for highly data parallel computing. This is in contrast to task constructs,
which were created to support task parallelism.

The most useful worksharing construct is the loop construct . It is simple to use and gives you the
ability to parallelize much of your sequential program easily. We begin with it.

11.4.3.1 Loop Construct

The purpose of the loop construct is to allow the separate iterations of a for-loop to be executed
in parallel. The for directive is the one that accomplishes this. It speci�es that the iterations
of the loops that follow it will be executed in parallel by the threads in the team executing the
parallel region containing the for directive4 It is intended to be nested inside a construct that
creates multiple threads, i.e., the parallel directive. Its syntax is

#pragma omp for [optional clause s] <newline>

for-loops

The most important requirement concerns the structure of the enclosed for-loops. The loops must
be in what OpenMP calls canonical form. Essentially, the loops must be in a form that makes it
possible for the compiler to parallelize the loop easily. It allows the iteration count of all associated
loops to be computed before executing the outermost containing loop. The canonical form of a loop
is

for (init-expr ; test-expr ; incr-expr ) structured-block

where

• init-expr is one of

var = lb

integer-type var = lb

random-access-iterator-type var = lb

pointer-type var = lb

in which lb is an expression whose value is loop-invariant (it does not change as the loop
iterates.)

• test-expr is either

var relational-operator b

b relational-operator var

4Technically, the threads are those in the parallel region to which the for binds according to the nesting rules,

which will be the innermost enclosing parallel region.
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in which b is an expression whose value is loop-invariant and the only relational operators
allowed are <, <=, >, and >=.

• incr-expr is one of :

++var

var++

- - var

var - -

var += incr

var - = incr

var = var + incr

var = incr + var

var = var - incr

in which incr is an expression whose value is loop-invariant and var is either an integer-type
or a pointer-type variable or in C++, a random-access iterator.

The other restrictions are fairly intuitive - because the compiler has to compute the number of
iterations, the test expression must have the right sense with respect to the increment. For example,
this does not work:

for ( i = M; i > N; i++ )

because the variable is increasing and the test compares i with a �greater-than� check against N;
the loop may never end.

The loop variable becomes private automatically in this construct; each thread has its own pri-
vate copy of it. Also, it must not be modi�ed during the execution of the for-loop other than
in incr-expr . Its value after the loop is unspeci�ed unless a lastprivate or linear clause is
speci�ed.

Some of the possible clauses are

• private(list ) has the same meaning as described in Section 11.4.2.

• firstprivate(list ) has the same meaning as described in Section 11.4.2.

• lastprivate(list ) declares that the variables in the list are private to each thread, and
causes the corresponding original list item to be updated after the end of the region.

• reduction(reduction-identifier: list ) has the same meaning as described in Section
11.4.2.

• schedule([modifier [, modifier ]:]kind [, chunk_size ]) speci�es how iterations of these
associated loops are divided into contiguous non-empty subsets, called chunks, and how these
chunks are distributed among threads of the team.

• nowait: If a nowait clause is present, an implementation may omit the barrier at the end of
the worksharing region. In this case, threads that �nish early may proceed straight to the
instructions following the worksharing region without waiting for the other members of the
team to �nish the worksharing region.
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Examples will now illustrate the loop construct.

Listing 11.5: parallel_for_demo1.c

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <omp . h>

in t main ( i n t argc , char∗ argv [ ] )
{

i n t ∗nums ;
i n t ar ray_s ize ;
i n t i ;

i f ( argc < 2 ) {
p r i n t f (" usage : %s array−s i z e \n" , argv [ 0 ] ) ;
e x i t ( 1 ) ;

}
ar ray_s ize = a t o i ( argv [ 1 ] ) ;
i f ( 0 >= array_s ize )

p r i n t f (" array s i z e must be a p o s i t i v e i n t e g e r \n " ) ;
e x i t ( 1 ) ;

}
nums = mal loc ( ar ray_s ize ∗ s i z e o f ( i n t ) ) ;
i f ( NULL == nums ) {

f p r i n t f ( s tde r r , " Error a l l o c a t i n g memory f o r array \n " ) ;
e x i t ( 1 ) ;

}

#pragma omp p a r a l l e l shared ( array_size , nums)
#pragma omp f o r
f o r ( i = 0 ; i< array_s ize ; i++)

/∗ array i s f i l l e d with id o f thread that f i l l e d i t ∗/
nums [ i ] = omp_get_thread_num ( ) ;

/∗ master thread p r i n t s out the array ∗/
f o r ( i = 0 ; i < array_s ize ; i++ )

p r i n t f ("%d\n" ,nums [ i ] ) ;

f r e e (nums ) ;
r e turn 0 ;

}

In Listing 11.5, the for-loop iterations are assigned to the default number of threads. Each thread
writes its thread ID into the array entry whose index is the loop iteration. The master thread prints
out the array contents so that we can see which threads were assigned which tasks (loop iterations.)
You will see when you run this that the number is usually divided evenly among the threads.

The schedule clause allows us to change which threads execute which chunks. The preceding
program is modi�ed by inclusion of two di�erent schedule clauses in the next listing. One requests
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a static schedule but changes the chunk size and the next requests a dynamic schedule. The program
prints out array contents that show the di�erent schedules.

Listing 11.6: parallel_for_demo2.c

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <omp . h>

in t main ( i n t argc , char∗ argv [ ] )
{

i n t ∗nums ;
i n t ∗nums2 ;
i n t ar ray_s ize ;
i n t i ;

i f ( argc < 2 ) {
p r i n t f (" usage : %s array−s i z e \n" , argv [ 0 ] ) ;
e x i t ( 1 ) ;

}

ar ray_s ize = a t o i ( argv [ 1 ] ) ;
i f ( 0 >= array_s ize ) {

p r i n t f (" array s i z e must be a p o s i t i v e i n t e g e r \n " ) ;
e x i t ( 1 ) ;

}
nums = mal loc ( ar ray_s ize ∗ s i z e o f ( i n t ) ) ;
nums2 = mal loc ( ar ray_s ize ∗ s i z e o f ( i n t ) ) ;
i f ( NULL == nums | | NULL == nums2 ) {

f p r i n t f ( s tde r r , " Error a l l o c a t i n g memory f o r array \n " ) ;
e x i t ( 1 ) ;

}

/∗ de c l a r e a p a r a l l e l r eg i on ∗/
#pragma omp p a r a l l e l f o r shared ( array_size , nums) schedu le ( s t a t i c , 2 )

f o r ( i = 0 ; i< array_s ize ; i++)
/∗ array i s f i l l e d with id o f thread that f i l l e d i t ∗/
nums [ i ] = omp_get_thread_num ( ) ;

#pragma omp p a r a l l e l f o r shared ( array_size , nums) schedu le ( dynamic , 2 )
f o r ( i = 0 ; i< array_s ize ; i++)

/∗ array i s f i l l e d with id o f thread that f i l l e d i t ∗/
nums2 [ i ] = omp_get_thread_num ( ) ;

/∗ master thread p r i n t s out the two ar rays showing the d i f f e r e n c e
between s t a t i c and dynamic s chedu l e s ∗/

p r i n t f (" S t a t i c \tDynamic\n " ) ;
f o r ( i = 0 ; i < array_s ize ; i++ )
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p r i n t f ("%d\ t%d\n" ,nums [ i ] , nums2 [ i ] ) ;

f r e e (nums ) ;
f r e e (nums2 ) ;
r e turn 0 ;

}

The last example is designed to show that there is no implicit barrier at the start of the loop
construct and that the threads do not necessarily get assigned chunks that are related to their
thread IDs. It delays the di�erent threads by di�erent amounts and within the loop

Listing 11.7: parallel_for_demo3.c

#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <omp . h>

in t main ( i n t argc , char∗ argv [ ] )
{

i n t ∗nums ;
i n t ar ray_s ize ;
i n t i ;
i n t t i d ;

i f ( argc < 2 ) {
p r i n t f (" usage : %s array−s i z e \n" , argv [ 0 ] ) ;
e x i t ( 1 ) ;

}
ar ray_s ize = a t o i ( argv [ 1 ] ) ;
i f ( 0 >= array_s ize ) {

p r i n t f (" array s i z e must be a p o s i t i v e i n t e g e r \n " ) ;
e x i t ( 1 ) ;

}
nums = c a l l o c ( array_size , s i z e o f ( i n t ) ) ;
i f ( NULL == nums ) {

f p r i n t f ( s tde r r , " Error a l l o c a t i n g memory f o r array \n " ) ;
e x i t ( 1 ) ;

}

/∗ de c l a r e a p a r a l l e l r eg i on ∗/
#pragma omp p a r a l l e l shared ( array_size , nums) p r i va t e ( t i d ) num_threads (8 )
{

t i d = omp_get_thread_num ( ) ;
u s l e ep ( t i d ∗800000) ;

/∗ de c l a r e a f o r to cause threads to execute loop i t e r a t i o n s ∗/
#pragma omp f o r
f o r ( i = 0 ; i< array_s ize ; i++) {

us l e ep ( ( omp_get_num_threads()− t i d )∗800000) ;
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p r i n t f ("Thread %d in loop i t e r a t i o n %d\n" , t id , i ) ;
/∗ array i s f i l l e d with id o f thread that f i l l e d i t ∗/
nums [ i ] = t i d ;

}
}

/∗ master thread p r i n t s out the array ∗/
f o r ( i = 0 ; i < array_s ize ; i++ )

p r i n t f ("%d\n" ,nums [ i ] ) ;

f r e e (nums ) ;
r e turn 0 ;

}
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