
CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

A First GTK+ Program

We will begin with a very simple GTK+ program in order to demonstrate some of the key tasks that
every GTK+ main program must perform. The program, hello_world.c, is found in many books
and articles about GTK+ in one form or another because it contains most of the basic elements.

This program will not terminate normally; in order to terminate it, you will have to kill it with a signal
such as Control-C issued from the terminal. If you click the close-box in the window when it runs, the
window will disappear but the process will continue to run in a windowless state. (Use ps to see the list
of running processes after closing the window to prove it to yourself.)

Note that line 1 includes <gtk/gtk.h> , the GTK+ header file that includes all GTK+ definitions as
well as headers for all libraries required by GTK+. It must always be present in any GTK+ program.
You will usually need no other header file in order to use the GTK+ libraries.

To compile and link this program, creating the executable hello_world, use the command

gcc -Wall -g -o hello_world hello_world.c \

`pkg-config --cflags --libs gtk+-2.0`

The backslash is there in order to write the command on multiple lines, acting to escape the newline

1

Listing 1: First GTK+ program: hello_world.c

1: #include <gtk/gtk.h>
2:
3: int main (int argc,
4: char *argv[])
5: {
6: GtkWidget *window;
7:
8: /* Initialize GTK+ and all of its supporting libraries. */
9: gtk_init (&argc, &argv);
10:
11: /* Create new window, give it a title and display to the user. */
12: window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
13: gtk_window_set_title (GTK_WINDOW (window), "Hello World");
14: gtk_widget_show (window);
15:
16: /* Hand control over to the main loop. */
17: gtk_main ();
18: return 0;
19: }

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

character that follows. The -g option enables debugging output.

Tasks in Creating GTK Programs

The program in Listing 1 demonstrates all but one of the key steps in creating a GTK+ application.
There are basically seven different steps:

1. Initialize the GTK environment;
2. Create the widgets and set their attributes;
3. Register the callback functions;
4. Create the instance hierarchy;
5. Display the widgets;
6. Enter the main event loop;
7. Clean up and quit.

These steps are not linear in sequence. The flow graph below shows what steps must precede others. In
the remainder of this document, I will summarize and give examples of each of these steps. Some of
them are trivial for you as programmer because they involve just a single function call, but they are all
critical and cannot be omitted.

In this first program, there are no callback functions, so step 3. is not required.

2

Init ialize the Environment

Create Widgets

Register callbacks

Display Widgets

Create Instance Hierarchy

Run Event Loop

Clean Up and Quit

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

Initializing the Environment

The call to gtk_init() in line 9 initializes the environment:

void gtk_init (int &argc, char &argv);

Note that you pass it the addresses of argc and argv, not argc and argv themselves. This is because
gtk_init() strips any arguments that it recognizes from the list and passes the rest to your program.
You must call gtk_init() before any other functions in the GTK+ libraries.

The GTK Object Hierarchy

Although GTK is written in C and provides an interface in C, it is object-oriented. It uses clever
techniques to provide all of the important features of object-oriented programming, including private
data, encapsulation, and virtual function calls. The top of the object hierarchy for all libraries is the
GObject. Everything is derived from GObject. GObject provides the methods that allow objects
to be created and destroyed, to be referenced and unreferenced, and to emit signals. The GObject
class has a set of properties inherited by all derived classes. The GInitiallyUnowned class is
derived from the GObject class. You will never have to use it and for now we will ignore it.

The GtkObject is the top of the GTK+ object hierarchy and is derived from
GInitiallyUnowned. This too is a class that we will make little use of. It exists for backwards
compatibility with GTK+1.0.

Widgets

The single most important GtkObject is the GtkWidget. The word “widget” comes from the
word “gadget”; in computer science, the word has come to mean something that responds to mouse
clicks, key presses, or other types of user actions. In short, widgets are things like windows, buttons,
menus, and edit-boxes.

The GtkWidget derives from GtkObject and inherits all of its properties and methods. The
GtkWindow is a widget that derives from GtkWidget and the GtkDialog is a kind of window that
derives from GtkWindow.

You may think that all widgets are either containers like windows and boxes of various kinds, or
controls like buttons and menus, but this is not the case. In fact, some widgets are neither, like a
GtkRange, which is a range of values. There are also objects that are not widgets, such as the
GtkCellRenderer class.

Widgets can be grouped together into composite widgets. This is how menus and menu bars are
constructed. A menu is a collection of widgets that act together. Menu bars are collections of menus.

Widgets have properties, such as their state and visibility. Some properties are inherited from the

3

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

ancestral GtkWidget class because they are part of all widgets. Others are specific to particular kinds
of widgets. Windows, for example, have properties not shared by rulers or calendars. Widgets also have
methods, which are the functions that act upon them, and these too are inherited from ancestor classes
or are specific to the class itself.

Object Types and Casting

The GObject hierarchy provides a set of macros for type checking and type casting. It is a pretty
intuitive set of macros to use. For example, to cast a pointer to a GtkWidget into a GObject, the
G_OBJECT() macro is used, as in

G_OBJECT(Widget_ptr)
The result is a pointer to a GObject.

In most programs, all widgets are declared and created using GtkWidget* pointers. If a window or a
button is created, it will be through a GtkWidget*; therefore, when one wants to use properties of
these things that are not inherited from the GtkWidget class but are part of the derived class, the
window or button will have to be cast to its own type. In the example program, we see that the window
object is declared as a GtkWidget, but to set its title, we have to cast it using GTK_WINDOW()
because windows have titles, not widgets in general.

In the program, the program's main and only window is declared as a widget in line 6:

 GtkWidget *window;

Creating Widgets and Setting Their Attributes

The program creates a window in line 12 using the instruction

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

This creates a window of fixed size using the default width and height of 200 pixels. The area of the
window includes the title bar and window border. This created a top-level window. A top-level window
is not under the control of the programmer; the window manager (e.g., Gnome) has control over such
things as its placement and its decorations. Your program can make requests, but they do not have to be
honored by the window manager, which has the much larger responsibility to manage all currently
running graphical applications. If you want a non-top-level window that you can control completely,
you use the GTK_WINDOW_POPUP type, which we will discuss later.

For many widgets W there is a function of the form gtk_W_new that creates an instance of a W widget.
Each of these functions is of the form

GtkWidget* gtk_W_new (parameters);

returning a pointer to a GtkWidget (not a W.) For some, there are no parameters, whereas for others,

4

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

there are. Some examples include

GtkWidget* gtk_window_new (GtkWindowType type);

for creating a window. Usually it is a top level window, which is the type to supply.

GtkWidget* gtk_button_new (void);

for creating a button. It takes no arguments.

GtkWidget* gtk_calendar_new (void);

for creating a calendar, also with no arguments.

GtkWidget* gtk_table_new (guint rows,

 guint columns,
 gboolean homogeneous);

for creating a table. It is given the numbers of rows and columns and a boolean indicating whether to
use uniform spacing or not.

GtkPrinter* gtk_printer_new (const gchar *name,
 GtkPrintBackend *backend,
 gboolean virtual_);

for creating a printer connection.

An almost complete list of the widgets that can be created with the gtk_*_new call follows. I have
omitted some of the more specialized widgets, and I have not included those widgets that are derived
from other widgets included in the list. For example, only a single button is listed, not radio buttons or
check boxes, which derive from them.

Widget Type Name in Call Parameter Prototype

buttons button (void)

calendars calendar (void)

combo-boxes: combo_box (void)

entries: entry (void)

events: event_box (void)

frames: frame (const gchar*)

horizontal boxes: hbox (gboolean, gint)

horizontal rulers: hruler (void)

horizontal scales hscale (GtkAdjustment*)

horizontal scrollbars hscrollbar (GtkAdjustment*)

labels: label (const gchar*)

5

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

Widget Type Name in Call Parameter Prototype

layouts: layout (GtkAdjustment*, GtkAdjustment*)

lists list (void)

menus menu (void)

menu bars: menu_bar (void)

menu items menu_item (void)

notebooks notebook (void)

printers printer (const gchar*, GtkPrintBackend*, gboolean)

sockets socket (void)

status bars statusbar (void)

tables table (guint, guint, gboolean)

text widgets text (GtkAdjustment*, GtkAdjustment*)

text buffers text_buffer (GtkTextTagTable*)

tool bars toobar (void)

tool items tool_item (void)

trees tree (void)

tree items tree_item (void)

tree paths tree_path (void)

vertical boxes: vbox (gboolean, gint)

view ports viewport (GtkAdjustment*, GtkAdjustment*)

vertical rulers: vruler (void)

vertical scales vscale (GtkAdjustment*)

vertical scrollbars vscrollbar (GtkAdjustment*)

windows window (GtkWindowType)

Table 1: Widgets with gtk_*_new() calls

After creating a widget, you should set its attributes. For some widgets, the attributes can include the
size, position, border widths, text that appears inside (e.g., it's title), its name, which is used by GTK in
looking up styles in gtkrc files, a topic to be covered later, and so on.

To determine what attributes can be set for a given widget, it is useful to look at their positions in the
widget hierarchy, remembering that any attribute defined by a widget's ancestor is inherited by the
widget. The hierarchy is depicted in the Appendix.

In the hello_world program, after creating a window with gtk_window_new, the title of the
window is set using

6

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

gtk_window_set_title (GTK_WINDOW (window), "Hello World");

We could also have set the resizable property with a call such as

gtk_window_set_resizable(GTK_WINDOW(window), FALSE);

which prevents the window from being resized.

Sometimes, the attributes to be set are not members of the widget class itself, but are inherited from a
parent or higher ancestor. An example is the border width of a window. Windows are not the only
widgets that have borders; in general, borders are a property of containers, an abstract base class from
which windows and buttons and other such things are derived. The border of a container is the empty
space inside of the container that surrounds its children. To set the border width of a window or a
button, you have to call the ancestor's method, casting as necessary:

gtk_container_set_border_width (GTK_CONTAINER (window), 10);

Notice that the ancestor's method expects a pointer to an instance of the ancestor (gtk_container),
so the window widget pointer is cast using the macro GTK_CONTAINER to a gtk_container*. I
will say more about this in Defining the Instance Hierarchy.

About Sizes

Sizes are always given in logical pixels. For example, in the call to set the border width of a container,
the integer is the number of logical pixels. The size of a logical pixel is determined by two factors: the
physical dimensions of the screen and the current display resolution. For example, if the monitor's
width is 14.75 inches and the resolution is set to 1152 by 864, then the number of logical pixels per
inch is 1152/14.75 = 78 pixels per inch.

Registering Callback Functions

In this program, there are no callback functions and hence nothing to do with them right now. The next
program will demonstrate what to do, so for now, we skip this topic.

Defining the Instance Hierarchy

When you define the user interface for your program, you visually lay out the various windows and
controls. Your layout determines the hierarchical relationships that the various widgets will have. In
general, there is a transitive, non-reflexive, non-symmetric "contains" relationship among widgets. If
widget A directly contains widget B, then A is a parent of B. If A contains B and B contains C, then A
contains C by transitivity. This leads naturally to a tree of containments.

GTK manages the allocation of memory and resources required by the various widgets in your
application. It frees you from having to figure out exactly how big everything needs to be, and it takes

7

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

care of resizing events as they take place. But this does not happen for free; in order for GTK to do this
for you, you have to do something for GTK in return. You have to tell GTK the parent-child
relationships that exist in the application by telling it what is contained in what, and in what relative
positions. In effect, by adding a widget into another widget viewed as a container, you are telling GTK
that the former is a child of the latter.

This first program has just a single widget, the main window, and so there is nothing that you have to
do to define the containment hierarchy within the program. The next program will demonstrate what is
required.

Showing The Widgets

Showing a widget is easy in this case since there is only a single widget to display. The call is simply

void gtk_widget_show(GtkWidget *widget);

 which sets the widget's visibility property to true. Line 14 uses this function:

gtk_widget_show(window);

Notice that the window does not need to be cast because it is a widget, not a window. The window may
not appear at once because requests are queued. Furthermore, a widget will not be displayed on the
screen unless its parent is visible as well.

You can hide a widget with the symmetric call

void gtk_widget_hide(GtkWidget *widget);

which hides a widget. If it has any children, then, because their parent is hidden, they will be hidden
because of the rule cited above, not because they are marked as invisible.

Starting the Main Event Loop

Every GTK+ application must have a gtk_main() call, which puts the program into an event driven
state. gtk_main() wrests control from the program and puts it in the hands of the behind-the-scenes
event manager. When gtk_main() is running, all events and signals are processed as they occur. The
only way for the program to terminate is via some outside event.

A Second GTK+ Application

The next application, from the Krause textbook, pages 23-24, introduces two features: containment and
signal handling. It is displayed in Listing 2. It can be compiled and linked the same way as the first
program. Unlike the first program, this one will terminate itself when the user clicks the close-box in

8

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

the main window.

The GtkLabel Widget

This program puts a label inside the main window using the GtkLabel widget. A GtkLabel widget
is a widget that can contain non-editable, formatted text, wrapped or unwrapped. One obvious use for
such a widget is to display labels for other widgets. The GtkLabel widget supports dozens of
methods, such as setting the text, setting various text attributes (whether it is selectable, how it is
aligned, wrapped or unwrapped, and so on), adding mnemonics, and retrieving the text in the widget.

To create the label, the program declares a widget pointer named label in line 9:

GtkWidget *window, *label;

and in line 25, it creates the widget and sets its text simultaneously with the function

GTkWidget* gtk_label_new (const gchar *str);

in which, if str is not NULL, it becomes the text of the label. If it is NULL the widget has no text.

Notice that in general GTK+ uses GLib types instead of the standard C types, preferring gchar to
char. The call in line 25 is

label = gtk_label_new ("Hello World");

To illustrate the use of one GtkLabel method besides its constructor, the program makes the widget
text selectable, so that it can be copied into the clipboard for use outside of the application using Ctrl-
C. The function to make the text selectable is

void gtk_label_set_selectable (GtkLabel *label,
 gboolean setting);

which is used in line 26:

gtk_label_set_selectable (GTK_LABEL (label), TRUE);

Notice that the function expects a GtkLabel* for tis first argument, so the label variable, which is
of type Widget*, must be cast to a GtkLabel*. The macro GTK_LABEL performs the cast. The
second argument is set to TRUE to turn on the selectable property.

The label text can be changed at any time with the function

void gtk_label_set_text (GtkLabel *label,
 const gchar *str);

The text can be retrieved with gtk_label_get_text():

const gchar* gtk_label_get_text (GtkLabel *label);

9

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

10

Listing 2: Second GTK+ program: hello_world2.c

1: #include <gtk/gtk.h>
2:
3: static void destroy (GtkWidget*, gpointer);
4: static gboolean delete_event (GtkWidget*, GdkEvent*, gpointer);
5:
6: int main (int argc, char *argv[])
8: {
9: GtkWidget *window, *label;
10:
11: gtk_init (&argc, &argv);
12:
13: window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
14: gtk_window_set_title (GTK_WINDOW (window), "Hello World!");
15: gtk_container_set_border_width (GTK_CONTAINER (window), 10);
16: gtk_widget_set_size_request (window, 200, 100);
17:
19: g_signal_connect (G_OBJECT (window), "destroy",
20: G_CALLBACK (destroy), NULL);
21: g_signal_connect (G_OBJECT (window), "delete_event",
22: G_CALLBACK (delete_event), NULL);
23:
24: /* Create a new GtkLabel widget that is selectable. */
25: label = gtk_label_new ("Hello World");
26: gtk_label_set_selectable (GTK_LABEL (label), TRUE);
27:
28: /* Add the label as a child widget of the window. */
29: gtk_container_add (GTK_CONTAINER (window), label);
30: gtk_widget_show_all (window);
31:
32: gtk_main ();
33: return 0;
34: }
35:
36: /* Stop the GTK+ main loop function. */
37: static void destroy (GtkWidget *window, gpointer data)
40: {
41: gtk_main_quit ();
42: }
43:
44: /* Return FALSE to destroy the widget. Returning TRUE, cancel s
45: a delete-event. This can be used to confirm quitting */
46: static gboolean delete_event (GtkWidget *window,
48: GdkEvent *event,
49: gpointer data)
50: {
51: return FALSE;
52: }

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

Consult the GTK+ Reference Manual for other methods. You will see functions to add mnemonics
(keyboard shortcuts), change the text properties and more.

About Container Widgets

In the first program, there was a single widget, and hence nothing was contained in anything else. In
general, a GTK+ user interface is constructed by nesting widgets inside widgets. There is a natural
parent-child relationship in containment: the contained object is the child of the containing object. This
leads to a tree of containments in which the internal nodes are container widgets. So, for example, you
might have a GtkWindow containing a GtkTable containing a GtkLabel. If you wanted an image
instead of a textual label inside the table, you might replace the GtkLabel widget with a GtkImage
widget. In this program, we want to put a label widget inside a window widget, and so the label would
be the child of the main window.

In general, to put one widget inside another, we have to use the methods of the container class from
which the parent was derived. In particular, a GtkWindow is derived indirectly from a
GtkContainer. The GtkContainer class is an abstract base class with two major types of
concrete subclasses, one that can have a single child, and others that can have multiple children. The
GtkContainer class encapsulates many properties and methods that are characteristic of things that
contain other things. For example, two properties are border width and whether it can be resized.
Methods include setting border width, adding and removing children, changing focus, and altering the
inter-relationships among its children.

The GtkBin is the subclass that can only contain one child. Windows, buttons, frames, and combo-
boxes are subclasses of GtkBin. You may wonder why a button is a GtkBin, but a button is simply a
container that contains a label. Because a window is a type of GtkBin, it can only contain one widget.

The GtkBox is one of the subclasses that can contain multiple children. So is the GtkTable and the
GtkTree (and a long list of others as well). There are three kinds of boxes: horizontal boxes, vertical
boxes, and button boxes. Horizontal boxes and vertical boxes provide enough flexibility so that you
can layout many windows with them alone.

Because a window is a type of GtkBin, it can have only a single child. If you only want to add a
single widget to a window, you can use the gtk_container_add() method:

void gtk_container_add(GtkContainer *container,
 GtkWidget *widget);

On line 29 of the listing, the call to add the label is

gtk_container_add (GTK_CONTAINER (window), label);

Notice that the window must be cast to a container to use this method.

11

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

Note. When you have several buttons, edit boxes, and other items to add, you will need to add a
container object to the window of the type that can have multiple children, such as the GtkBox
subclasses, the GtkTable, the GtkAlignment, the GtkFixed, or the GtkLayout. Also, if you
have a window-less widget that needs to respond to events, it can be placed into a special
GtkEventBox, which is a GtkBin class that provides a home for such widgets and allows them to
appear to handle those events. Labels are a good example of this; labels have no windows and cannot
respond to events, so if you wanted to make them do things when they are clicked, you would put them
into event boxes. We will cover event boxes and the other types of containers in subsequent lessons.

We use one other GtkContainer method in this example program to demonstrate how to set the
border width of the window. Remember that the border is the region inside the window near the edge,
like a margin. The border width is the number of pixels surrounding on the inside edge of the window
that cannot be used by any nested widgets. The border creates space around the child widget. The
function is:

void gtk_container_set_border_width(GtkContainer *container,
 guint border_width);

and it is used on line 15 to set a width of 10 pixels all around the window:

gtk_container_set_border_width (GTK_CONTAINER (window), 10);

Size Requisition and Allocation

On line 16, the program sets the window size to 200 by 100 pixels with the call

gtk_widget_set_size_request (window, 200, 100);

which uses the widget method

void gtk_widget_set_size_request(GtkWidget *widget,
 gint width,
 gint height);

This sets the minimum size of the window. It is a request to the window manager to draw it at least this
large, possibly larger. The window will not be drawn this size if doing so makes it too small to be
functional. By passing -1 in either size parameter, you tel GTK+ to use the natural size of the window,
which is the size GTK+ would calculate it needs to draw all of the nested widgets within it. If one
parameter is -1, the window is sized using the other and scaled appropriately.

In order to understand how large widgets can or cannot be, you need to understand how GTK
determines the sizes of widgets. A container acts as a negotiator between its parent and its children;
children make size requests, usually implicitly, but parents may impose size limitations. The container
finds a happy medium.

12

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

A widget makes a size request by virtue of its properties. For example, a label contains text of a
particular size and so it needs a minimum height and width for its display. The same is true of an icon
or an image. The container must add up the size requests of all of its children and present a request to
the parent. If the request can be satisfied, then all of the children receive an allocation that satisfies their
needs. If the request cannot be satisfied, then the children are given less space than they requested.

Requests proceed from the top down. The highest level widget in the tree, usually a window, asks its
child container how much space it needs. The container in turn, asks each of its children, which in turn
ask their children , which in turn ask theirs, and so on, until the leaf nodes in this tree are reached. The
leaf nodes present their requests, and their parents compute their requests, and their parents, theirs, and
so on, until the request reaches the top level. If it can be satisfied, the allocations take place, in a top-to-
bottom direction. The top-level widget tells its children how much space they get, and they in turn tell
their children how much they get, and so on, until all widgets have been given their allocations.

Each child widget must "live with" what it gets. Life is tough for a widget, and it does not always get
what it asked for. On the other hand, windows almost always expand to satisfy the requests of their
children, so under normal circumstances, the windows will be as large as necessary to grant the
requests of the children. Even if a window is set to be non-resizable, it will still expand to
accommodate the sizes of its children; it will not let the user resize it though.

Showing Widgets

Sometimes it is convenient to display each widget as it is created, and other times it is easier to wait
until just before the event loop to display them all. If you have placed many widgets inside a
container, rather than calling gtk_widget_show() for each widget, you first create them all, and
then you can use the following function:

void gtk_widget_show_all(GtkWidget *widget);

where widget is the top-level container itself. This function will recursively descend into the container,
showing each widget and any of its children. In our example program, the call is made on line 30:

gtk_widget_show_all(window);

One advantage of doing it this way is that the window appears all at once, already drawn, instead of
appearing in pieces, which can be disconcerting to the user.

Signals and Callback Functions

Signals and Events

All GUIs depend upon the propagation of events from the hardware and/or operating system to the
application, so that it can handle those events. Events usually represent inputs from a user, such as

13

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

mouse clicks, mouse dragging, or key presses, but they can also represent changes of focus caused by
an application becoming active, or remapping of screen regions to different applications. GTK
distinguishes between events and signals. Events are derived from the underlying GDK event system,
which in turns comes from X Windows. Signals were added to GTK because events were not robust
and flexible enough. It is summarized well by Havoc Pennington1:

"Events are a stream of messages received from the X server. They drive the Gtk main loop; which
more or less amounts to "wait for events, process them" (not exactly, it is really more general than that
and can wait on many different input streams at once). Events are a Gdk/Xlib concept."

"Signals are a feature of GtkObject and its subclasses. They have nothing to do with any input
stream; really a signal is just a way to keep a list of callbacks around and invoke them ("emit" the
signal). There are lots of details and extra features of course. Signals are emitted by object instances,
and are entirely unrelated to the Gtk main loop. Conventionally, signals are emitted "when something
changes" about the object emitting the signal."

"Signals and events only come together because GtkWidget happens to emit signals when it gets
events. This is purely a convenience, so you can connect callbacks to be invoked when a particular
widget receives a particular event. There is nothing about this that makes signals and events inherently
related concepts, any more than emitting a signal when you click a button makes button clicking and
signals related concepts."

To summarize, an event is a notification that is generated by the X Window system, passed up to the
application through the GDK library. They correspond to actual actions such as mouse movements or
key presses. Signals are notifications emitted by widgets. Events can trigger signals. For example,
when the mouse button is pressed, a button-press-event is issued by the window manager on the button,
and this causes a clicked signal to be emitted by the button.

When GDK generates an event, it is placed in a queue that is processed by the GTK+ main event loop.
GTK+ monitors GDK's event queue; for each event received, it decides which widget (if any) should
receive the event. The GtkWidget base class defines signals for most event types (such as
"button_press_event"); it also defines a generic "event" signal.

Signals and events are both notifications to the program that something happened that requires the
program's attention, and callback functions are the way that the program responds to them. The
functions are called callbacks because the calling is backwards -- the callback function is a function in
your program's code that is called by the run-time system (the operating system in a sense) when
something happens.

You should remember that objects emit signals and that the set of signals that an object can emit
consists of all signals that it inherits from ancestor classes, as well as signals that are specific to the
class of which it is an instance. For example, a button, being a descendant of the widget class, can emit
a “hide” signal because all widgets can emit the hide signal, but buttons can also emit the “clicked”
signal, which is a button signal in particular.

There are two steps to creating callback functions. The first is to create the function definition. The

1 Havoc Pennington, “GTK+/Gnome Application Development, New Riders Publishing, ISBN 0-7357-0078-8

14

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

second is to connect the function to the signal or event that it is supposed to handle and register that
connection. We begin by looking at how callbacks are connected to signals and events.

Registering Callback Functions

To connect a callback function to a signal, the g_signal_connect() function is used:

gulong g_signal_connect(gpointer *object_emitting_signal,
 const gchar *name_of_signal,
 GCallback function,
 gpointer function_data);

The first argument is the widget that will be emitting the signal, cast to a GObject*, and the second
is the name of the signal to catch, as a string. The third is the callback function to be called when the
signal is caught. It must be cast to a GCallBack using the macro G_CALLBACK(). The fourth is a
pointer to the data to be passed to the callback function. In our program, there are two calls to
g_signal_connect():

 g_signal_connect (G_OBJECT (window), "destroy",
 G_CALLBACK (destroy), NULL);

g_signal_connect (G_OBJECT (window), "delete_event",
 G_CALLBACK (delete_event), NULL);

In both cases, the widget to be monitored is the main window, cast as a GObject. The GObject class
defines the destroy signal, and all widgets inherit it. When the window emits the destroy signal, the
destroy() callback function in this program will be run, with no data passed to it since the fourth
parameter is NULL.

The second call handles the delete-event2. The delete-event is an event, not a signal. When
the user clicks the close box in the main window, it generates a delete-event. Any attempt to close
the window, such as with the close menu item that appears when you right-click the title-bar, will also
generate the delete-event. The callback function, delete_event(), in this program simply
returns FALSE in response. The FALSE return value causes GTK+ to emit the destroy signal on the
widget, which is handled by the destroy() function. This function calls gtk_main_quit(),
which deallocates all resources and terminates the application.

In this simple program, the return value from the calls to g_signal_connect() was not used. The
return value is an unsigned integer that acts as an identifier for the signal, like a signal id. If for some
reason, you wanted to temporarily block the signal, you could use g_signal_handler_block(),
passing this id. There are calls to unblock and even disconnect the signal as well, and all require this id.

Later we will see another means of connecting signals that allows us to do make clicks on one widget
cause a different widget to be closed.

2 The delete-event signal can be written as “delete-event” or “delete_event” -- either works.

15

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

Callback Functions

Callback functions can take several forms, but the simplest and most common is

void callback_func(GtkWidget *widget,
 gpointer callback_data);

Here, the first argument is a pointer to the widget that emitted the signal and the second argument is a
pointer to the data to be used by the function. The actual form of a callback function depends upon the
widget and the event or signal; you have to consult the reference manual to determine the parameters.

Callbacks for events are different from callbacks for signals. Event handling callbacks usually have
three parameters, one of which is the name of the event. Callbacks for signals may only have two
parameters. The easiest way to find the form of the function is to use the GTK+ (version#) Reference
Manual: click on the Index hyperlink, and use the browser's find function to look up the exact name of
the signal. For example, to find the “delete-event” signal, enter “delete-event”. Then click on the
hyperlink and the section with the prototype for that callback will open.

In our program, there is a callback for the delete-event and a callback for the destroy signal.
The destroy() function has two parameters; the delete_event() function has three.

static void destroy (GtkWidget *window, gpointer data)
{
 gtk_main_quit ();
}

static gboolean delete_event (GtkWidget *window,
 GdkEvent *event,
 gpointer data)
{
 return FALSE;
}

They are both very simple, but they must conform to the expected structure. Because
delete_event() handles an event, it is passed the GdkEvent type as its second parameter.
Because it handles events, it must return a boolean value. If TRUE is returned, GTK+ assumes that the
function handled the event. If FALSE is returned, it assumes the event has not been handled, and it will
handle the event itself. For example, the delete-event will be processed by issuing the destroy
signal on the widget that emitted the event. In general, your callbacks for events should return FALSE,
unless you want to handle them yourself and stop GTK+ from continuing to handle it.

Events and Event Types

It is easy to know when a signal is the result of an event -- the signal name will always be of the form
"something-event." All signals with names of this form are caused by GDK events. All events are

16

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

associated with a GdkWindow. As mentioned above, they also come to be associated with a
GtkWidget when the GTK+ main loop passes events from GDK to the GTK+ widget tree.

There are thirty or so different events that GDK can generate. The Appendix has the complete set of
them. For each GDK event type, there is a corresponding GTK signal name. The GDK events and the
corresponding signal names are also in the Appendix.

Sometimes you do not know what type of event took place when you receive a signal. For example, the
"button-press-event" is emitted by any of three different GDK event types: GDK_BUTTON_PRESS,
GDK_2BUTTON_PRESS, and GDK_3BUTTON_PRESS, The callback has to inspect the event
structure to determine which took place. For example, for a button press, the callback may be
something like this:

static gboolean button_press_event (GtkWidget *window,
 GdkEvent *event,
 gpointer data)
{
 if (event->type == GDK_BUTTON_PRESS)
 do_single_click(window, data);
 else if (event->type == GDK_2BUTTON_PRESS)
 do_double_click(window, data);
 else
 do_triple_click(window, data);

 return FALSE;
}

 Processing Signals and Events

This is a relatively easy part for you as programmer because GTK takes control of signal and event
handling within the gtk_main() function. After everything else has been taken care of in your program,
it must call gtk_main(). This function enters a wait state in which it listens for events and signals
directed at your program. Each time an event or signal is transmitted to your program, gtk_main()
determines its type and which callback function must be invoked. When the callback finishes,
gtk_main() resumes.

Quitting

Usually, the signal handling functions will respond to the signal to close the program and issue a
gtk_main_quit() call, which terminates the program. It is also possible to make
gtk_main_quit() the callback of the event itself, when the only action is quitting, as in

 g_signal_connect (G_OBJECT (window), "destroy",

17

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

 G_CALLBACK (gtk_main_quit), NULL);

Regardless of how it is done, gtk_main_quit() is needed in order to clean up resources and
notify the operating system that the process has terminated.

A Third Example

In many applications, clicking a button has an effect on a widget other than the button itself. For
example, a window may have a button that when clicked, causes the an action to be taken which also
might include closing the window itself. This is what happens when, in a dialog box, you click the
"OK" or "CANCEL" button. If a button's callback function is run when a button is clicked, how could
it cause a window to close? The answer is that with what you know so far, there is no way to
accomplish this.

GTK+ solves this problem with a special function,

gulong
g_signal_connect_swapped(gpointer *object_emitting_signal,
 const gchar *name_of_signal,
 GCallback function,
 gpointer function_data);

Unlike g_signal_connect(), just prior to starting the callback function, the pointer to the object
emitting the signal is swapped with the data pointer, so that the callback receives, in its first argument,
the data pointer. By putting a pointer to the window in the data pointer, the callback will be invoked on
the window object. If we want to close the window, we can use this function as follows:

 g_signal_connect_swapped (G_OBJECT (button), "clicked",
 G_CALLBACK (gtk_widget_destroy),
 (gpointer) window);

When the button emits a clicked signal, gtk_widget_destroy() will be called on the window
passed to it in the fourth parameter.

The third program will create a button widget and connect it to the clicked signal so that it closes the
top-level window and thereby terminates the application. To create a button widget with a mnemonic
label, we use the following method:

 button = gtk_button_new_with_mnemonic ("_Close");

This puts the word "Close" in the button. The underscore preceding the "C" turns Alt-C into a
keyboard accelerator that activates the button. The user can type Alt-C to terminate the application.
The program is in Listing 3.

The other ways to create a button can be found in the GTK+ Reference Manuals. They include creating

18

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

a button with a label, or creating a stock button. We will cover stock items later.

GObject Properties

The GObject base class has methods that allow you to set and retrieve the properties of an object. It
also lets you define arbitrary key-value pairs that can be added to an object. Since all widgets inherit
this feature, it is a means of adding user-defined data to widgets. The four relevant methods are
g_object_get(), g_object_set(), g_object_get_data(), and
g_object_set_data().

19

Listing 3: Third GTK+ Program, adding a button

1: #include <gtk/gtk.h>
2:
3: int main (int argc,
4: char *argv[])
5: {
6: GtkWidget *window, *button;
7:
8: gtk_init (&argc, &argv);
9:
10: window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
11: gtk_window_set_title (GTK_WINDOW (window), "Buttons");
12: gtk_widget_set_size_request (window, 200, 100);
13:
14: g_signal_connect (G_OBJECT (window), "destroy",
15: G_CALLBACK (gtk_main_quit), NULL);
16:
17: button = gtk_button_new_with_mnemonic ("_Close");
18: gtk_button_set_relief (GTK_BUTTON (button), GTK_RELIEF_NONE);
19:
20: g_signal_connect_swapped (G_OBJECT (button), "clicked",
21: G_CALLBACK (gtk_widget_destroy),
22: (gpointer) window);
23:
24: gtk_container_add (GTK_CONTAINER (window), button);
25: gtk_widget_show_all (window);
26:
27: gtk_main ();
28: return 0;
29: }

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

To illustrate, to retrieve the "relief" propery of a button, you could use the call

GtkReliefStyle relief_value;
g_object_get(G_OBJECT(button),"relief",&relief_value, NULL);

To set the relief of the button, you would use

g_object_set(G_OBJECT(button),"relief",GTK_RELIEF_NORMAL, NULL);

In general, the functions take a pointer to a GObject followed by a NULL-terminated list of property
names as strings, and either a variable in which to store the value (for get), or a value (for set).

The ability to add key-value pairs is based on keys represented as strings, and pointers for their values.
Each object has a table of strings with associated pointers. The method setting is

void g_object_set_data (GObject *object,
 const gchar *key,
 gpointer value);

and for retrieving is

gpointer g_object_set_data (GObject *object,
 const gchar *key);

If you need to pass data to a widget, you should use these methods. We will see examples of this in the
upcoming lessons. To give you some idea of the power of these methods, suppose that you want to
store in a drawing widget, a user's choice of default font or a pen color for drawing. You could create a
key named "user_font_choice" and use these methods to set its value and retrieve it.

20

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

Appendix

Object Hierarchy
 GObject
 GInitiallyUnowned
 GtkObject
 GtkWidget
 GtkContainer
 GtkBin
 GtkWindow
 GtkDialog
 GtkAboutDialog
 GtkColorSelectionDialog
 GtkFileChooserDialog
 GtkFileSelection
 GtkFontSelectionDialog
 GtkInputDialog
 GtkMessageDialog
 GtkPageSetupUnixDialog
 GtkPrintUnixDialog
 GtkRecentChooserDialog
 GtkAssistant
 GtkPlug
 GtkAlignment
 GtkFrame
 GtkAspectFrame
 GtkButton
 GtkToggleButton
 GtkCheckButton
 GtkRadioButton
 GtkColorButton
 GtkFontButton
 GtkLinkButton
 GtkOptionMenu
 GtkScaleButton
 GtkVolumeButton
 GtkItem
 GtkMenuItem
 GtkCheckMenuItem
 GtkRadioMenuItem
 GtkImageMenuItem
 GtkSeparatorMenuItem
 GtkTearoffMenuItem
 GtkListItem
 GtkTreeItem
 GtkComboBox
 GtkComboBoxEntry
 GtkEventBox
 GtkExpander
 GtkHandleBox

21

http://library.gnome.org/devel/gtk/stable/GtkHandleBox.html
http://library.gnome.org/devel/gtk/stable/GtkExpander.html
http://library.gnome.org/devel/gtk/stable/GtkEventBox.html
http://library.gnome.org/devel/gtk/stable/GtkComboBoxEntry.html
http://library.gnome.org/devel/gtk/stable/GtkComboBox.html
http://library.gnome.org/devel/gtk/stable/GtkTreeItem.html
http://library.gnome.org/devel/gtk/stable/GtkListItem.html
http://library.gnome.org/devel/gtk/stable/GtkTearoffMenuItem.html
http://library.gnome.org/devel/gtk/stable/GtkSeparatorMenuItem.html
http://library.gnome.org/devel/gtk/stable/GtkImageMenuItem.html
http://library.gnome.org/devel/gtk/stable/GtkRadioMenuItem.html
http://library.gnome.org/devel/gtk/stable/GtkCheckMenuItem.html
http://library.gnome.org/devel/gtk/stable/GtkMenuItem.html
http://library.gnome.org/devel/gtk/stable/GtkItem.html
http://library.gnome.org/devel/gtk/stable/GtkVolumeButton.html
http://library.gnome.org/devel/gtk/stable/GtkScaleButton.html
http://library.gnome.org/devel/gtk/stable/GtkOptionMenu.html
http://library.gnome.org/devel/gtk/stable/GtkLinkButton.html
http://library.gnome.org/devel/gtk/stable/GtkFontButton.html
http://library.gnome.org/devel/gtk/stable/GtkColorButton.html
http://library.gnome.org/devel/gtk/stable/GtkRadioButton.html
http://library.gnome.org/devel/gtk/stable/GtkCheckButton.html
http://library.gnome.org/devel/gtk/stable/GtkToggleButton.html
http://library.gnome.org/devel/gtk/stable/GtkButton.html
http://library.gnome.org/devel/gtk/stable/GtkAspectFrame.html
http://library.gnome.org/devel/gtk/stable/GtkFrame.html
http://library.gnome.org/devel/gtk/stable/GtkAlignment.html
http://library.gnome.org/devel/gtk/stable/GtkPlug.html
http://library.gnome.org/devel/gtk/stable/GtkAssistant.html
http://library.gnome.org/devel/gtk/stable/GtkRecentChooserDialog.html
http://library.gnome.org/devel/gtk/stable/GtkPrintUnixDialog.html
http://library.gnome.org/devel/gtk/stable/GtkPageSetupUnixDialog.html
http://library.gnome.org/devel/gtk/stable/GtkMessageDialog.html
http://library.gnome.org/devel/gtk/stable/GtkInputDialog.html
http://library.gnome.org/devel/gtk/stable/GtkFontSelectionDialog.html
http://library.gnome.org/devel/gtk/stable/GtkFileSelection.html
http://library.gnome.org/devel/gtk/stable/GtkFileChooserDialog.html
http://library.gnome.org/devel/gtk/stable/GtkColorSelectionDialog.html
http://library.gnome.org/devel/gtk/stable/GtkAboutDialog.html
http://library.gnome.org/devel/gtk/stable/GtkDialog.html
http://library.gnome.org/devel/gtk/stable/GtkWindow.html
http://library.gnome.org/devel/gtk/stable/GtkBin.html
http://library.gnome.org/devel/gtk/stable/GtkContainer.html
http://library.gnome.org/devel/gtk/stable/GtkWidget.html
http://library.gnome.org/devel/gtk/stable/GtkObject.html
http://library.gnome.org/devel/gobject/unstable/gobject-The-Base-Object-Type.html#GInitiallyUnowned
http://library.gnome.org/devel/gobject/unstable/gobject-The-Base-Object-Type.html#GObject

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

 GtkToolItem
 GtkToolButton
 GtkMenuToolButton
 GtkToggleToolButton
 GtkRadioToolButton
 GtkSeparatorToolItem
 GtkScrolledWindow
 GtkViewport
 GtkBox
 GtkButtonBox
 GtkHButtonBox
 GtkVButtonBox
 GtkVBox
 GtkColorSelection
 GtkFileChooserWidget
 GtkFontSelection
 GtkGammaCurve
 GtkRecentChooserWidget
 GtkHBox
 GtkCombo
 GtkFileChooserButton
 GtkInfoBar
 GtkStatusbar
 GtkCList
 GtkCTree
 GtkFixed
 GtkPaned
 GtkHPaned
 GtkVPaned
 GtkIconView
 GtkLayout
 GtkList
 GtkMenuShell
 GtkMenuBar
 GtkMenu
 GtkRecentChooserMenu
 GtkNotebook
 GtkSocket
 GtkTable
 GtkTextView
 GtkToolbar
 GtkTree
 GtkTreeView
 GtkMisc
 GtkLabel
 GtkAccelLabel
 GtkTipsQuery
 GtkArrow
 GtkImage
 GtkPixmap
 GtkCalendar
 GtkCellView
 GtkDrawingArea

22

http://library.gnome.org/devel/gtk/stable/GtkDrawingArea.html
http://library.gnome.org/devel/gtk/stable/GtkCellView.html
http://library.gnome.org/devel/gtk/stable/GtkCalendar.html
http://library.gnome.org/devel/gtk/stable/GtkPixmap.html
http://library.gnome.org/devel/gtk/stable/GtkImage.html
http://library.gnome.org/devel/gtk/stable/GtkArrow.html
http://library.gnome.org/devel/gtk/stable/GtkTipsQuery.html
http://library.gnome.org/devel/gtk/stable/GtkAccelLabel.html
http://library.gnome.org/devel/gtk/stable/GtkLabel.html
http://library.gnome.org/devel/gtk/stable/GtkMisc.html
http://library.gnome.org/devel/gtk/stable/GtkTreeView.html
http://library.gnome.org/devel/gtk/stable/GtkTree.html
http://library.gnome.org/devel/gtk/stable/GtkToolbar.html
http://library.gnome.org/devel/gtk/stable/GtkTextView.html
http://library.gnome.org/devel/gtk/stable/GtkTable.html
http://library.gnome.org/devel/gtk/stable/GtkSocket.html
http://library.gnome.org/devel/gtk/stable/GtkNotebook.html
http://library.gnome.org/devel/gtk/stable/GtkRecentChooserMenu.html
http://library.gnome.org/devel/gtk/stable/GtkMenu.html
http://library.gnome.org/devel/gtk/stable/GtkMenuBar.html
http://library.gnome.org/devel/gtk/stable/GtkMenuShell.html
http://library.gnome.org/devel/gtk/stable/GtkList.html
http://library.gnome.org/devel/gtk/stable/GtkLayout.html
http://library.gnome.org/devel/gtk/stable/GtkIconView.html
http://library.gnome.org/devel/gtk/stable/GtkVPaned.html
http://library.gnome.org/devel/gtk/stable/GtkHPaned.html
http://library.gnome.org/devel/gtk/stable/GtkPaned.html
http://library.gnome.org/devel/gtk/stable/GtkFixed.html
http://library.gnome.org/devel/gtk/stable/GtkCTree.html
http://library.gnome.org/devel/gtk/stable/GtkCList.html
http://library.gnome.org/devel/gtk/stable/GtkStatusbar.html
http://library.gnome.org/devel/gtk/stable/GtkInfoBar.html
http://library.gnome.org/devel/gtk/stable/GtkFileChooserButton.html
http://library.gnome.org/devel/gtk/stable/GtkCombo.html
http://library.gnome.org/devel/gtk/stable/GtkHBox.html
http://library.gnome.org/devel/gtk/stable/GtkRecentChooserWidget.html
http://library.gnome.org/devel/gtk/stable/GtkGammaCurve.html
http://library.gnome.org/devel/gtk/stable/GtkFontSelection.html
http://library.gnome.org/devel/gtk/stable/GtkFileChooserWidget.html
http://library.gnome.org/devel/gtk/stable/GtkColorSelection.html
http://library.gnome.org/devel/gtk/stable/GtkVBox.html
http://library.gnome.org/devel/gtk/stable/GtkVButtonBox.html
http://library.gnome.org/devel/gtk/stable/GtkHButtonBox.html
http://library.gnome.org/devel/gtk/stable/GtkButtonBox.html
http://library.gnome.org/devel/gtk/stable/GtkBox.html
http://library.gnome.org/devel/gtk/stable/GtkViewport.html
http://library.gnome.org/devel/gtk/stable/GtkScrolledWindow.html
http://library.gnome.org/devel/gtk/stable/GtkSeparatorToolItem.html
http://library.gnome.org/devel/gtk/stable/GtkRadioToolButton.html
http://library.gnome.org/devel/gtk/stable/GtkToggleToolButton.html
http://library.gnome.org/devel/gtk/stable/GtkMenuToolButton.html
http://library.gnome.org/devel/gtk/stable/GtkToolButton.html
http://library.gnome.org/devel/gtk/stable/GtkToolItem.html

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

 GtkCurve
 GtkEntry
 GtkSpinButton
 GtkRuler
 GtkHRuler
 GtkVRuler
 GtkRange
 GtkScale
 GtkHScale
 GtkVScale
 GtkScrollbar
 GtkHScrollbar
 GtkVScrollbar
 GtkSeparator
 GtkHSeparator
 GtkVSeparator
 GtkHSV
 GtkInvisible
 GtkOldEditable
 GtkText
 GtkPreview
 GtkProgress
 GtkProgressBar
 GtkAdjustment
 GtkCellRenderer
 GtkCellRendererText
 GtkCellRendererAccel
 GtkCellRendererCombo
 GtkCellRendererSpin
 GtkCellRendererPixbuf
 GtkCellRendererProgress
 GtkCellRendererToggle
 GtkFileFilter
 GtkItemFactory
 GtkTooltips
 GtkTreeViewColumn
 GtkRecentFilter
 GtkAccelGroup
 GtkAccelMap
 AtkObject
 GtkAccessible
 GtkAction
 GtkToggleAction
 GtkRadioAction
 GtkRecentAction
 GtkActionGroup
 GtkBuilder
 GtkClipboard
 GtkEntryBuffer
 GtkEntryCompletion
 GtkIconFactory
 GtkIconTheme
 GtkIMContext

23

http://library.gnome.org/devel/gtk/stable/GtkIMContext.html
http://library.gnome.org/devel/gtk/stable/GtkIconTheme.html
http://library.gnome.org/devel/gtk/stable/gtk-Themeable-Stock-Images.html#GtkIconFactory
http://library.gnome.org/devel/gtk/stable/GtkEntryCompletion.html
http://library.gnome.org/devel/gtk/stable/GtkEntryBuffer.html
http://library.gnome.org/devel/gtk/stable/gtk-Clipboards.html#GtkClipboard
http://library.gnome.org/devel/gtk/stable/GtkBuilder.html
http://library.gnome.org/devel/gtk/stable/GtkActionGroup.html
http://library.gnome.org/devel/gtk/stable/GtkRecentAction.html
http://library.gnome.org/devel/gtk/stable/GtkRadioAction.html
http://library.gnome.org/devel/gtk/stable/GtkToggleAction.html
http://library.gnome.org/devel/gtk/stable/GtkAction.html
http://library.gnome.org/devel/gtk/stable/GtkAccessible.html
http://library.gnome.org/usr/share/gtk-doc/html/atk/AtkObject.html
http://library.gnome.org/devel/gtk/stable/gtk-Accelerator-Maps.html#GtkAccelMap
http://library.gnome.org/devel/gtk/stable/gtk-Keyboard-Accelerators.html#GtkAccelGroup
http://library.gnome.org/devel/gtk/stable/GtkRecentFilter.html
http://library.gnome.org/devel/gtk/stable/GtkTreeViewColumn.html
http://library.gnome.org/devel/gtk/stable/GtkTooltips.html
http://library.gnome.org/devel/gtk/stable/GtkItemFactory.html
http://library.gnome.org/devel/gtk/stable/gtk-gtkfilefilter.html#GtkFileFilter
http://library.gnome.org/devel/gtk/stable/GtkCellRendererToggle.html
http://library.gnome.org/devel/gtk/stable/GtkCellRendererProgress.html
http://library.gnome.org/devel/gtk/stable/GtkCellRendererPixbuf.html
http://library.gnome.org/devel/gtk/stable/GtkCellRendererSpin.html
http://library.gnome.org/devel/gtk/stable/GtkCellRendererCombo.html
http://library.gnome.org/devel/gtk/stable/GtkCellRendererAccel.html
http://library.gnome.org/devel/gtk/stable/GtkCellRendererText.html
http://library.gnome.org/devel/gtk/stable/GtkCellRenderer.html
http://library.gnome.org/devel/gtk/stable/GtkAdjustment.html
http://library.gnome.org/devel/gtk/stable/GtkProgressBar.html
http://library.gnome.org/devel/gtk/stable/GtkProgress.html
http://library.gnome.org/devel/gtk/stable/GtkPreview.html
http://library.gnome.org/devel/gtk/stable/GtkText.html
http://library.gnome.org/devel/gtk/stable/GtkOldEditable.html
http://library.gnome.org/devel/gtk/stable/GtkInvisible.html
http://library.gnome.org/devel/gtk/stable/GtkHSV.html
http://library.gnome.org/devel/gtk/stable/GtkVSeparator.html
http://library.gnome.org/devel/gtk/stable/GtkHSeparator.html
http://library.gnome.org/devel/gtk/stable/GtkSeparator.html
http://library.gnome.org/devel/gtk/stable/GtkVScrollbar.html
http://library.gnome.org/devel/gtk/stable/GtkHScrollbar.html
http://library.gnome.org/devel/gtk/stable/GtkScrollbar.html
http://library.gnome.org/devel/gtk/stable/GtkVScale.html
http://library.gnome.org/devel/gtk/stable/GtkHScale.html
http://library.gnome.org/devel/gtk/stable/GtkScale.html
http://library.gnome.org/devel/gtk/stable/GtkRange.html
http://library.gnome.org/devel/gtk/stable/GtkVRuler.html
http://library.gnome.org/devel/gtk/stable/GtkHRuler.html
http://library.gnome.org/devel/gtk/stable/GtkRuler.html
http://library.gnome.org/devel/gtk/stable/GtkSpinButton.html
http://library.gnome.org/devel/gtk/stable/GtkEntry.html
http://library.gnome.org/devel/gtk/stable/GtkCurve.html

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

 GtkIMContextSimple
 GtkIMMulticontext
 GtkListStore
 GMountOperation
 GtkMountOperation
 GtkPageSetup
 GtkPrinter
 GtkPrintContext
 GtkPrintJob
 GtkPrintOperation
 GtkPrintSettings
 GtkRcStyle
 GtkRecentManager
 GtkSettings
 GtkSizeGroup
 GtkStatusIcon
 GtkStyle
 GtkTextBuffer
 GtkTextChildAnchor
 GtkTextMark
 GtkTextTag
 GtkTextTagTable
 GtkTreeModelFilter
 GtkTreeModelSort
 GtkTreeSelection
 GtkTreeStore
 GtkUIManager
 GtkWindowGroup
 GtkTooltip
 GtkPrintBackend
 GInterface
 GtkBuildable
 GtkActivatable
 GtkOrientable
 GtkCellEditable
 GtkCellLayout
 GtkEditable
 GtkFileChooser
 GtkTreeModel
 GtkTreeDragSource
 GtkTreeDragDest
 GtkTreeSortable
 GtkPrintOperationPreview
 GtkRecentChooser
 GtkToolShell

Events in GDK

The following enumeration is defined in the GDK Reference Manual.

24

http://library.gnome.org/devel/gtk/stable/GtkToolShell.html
http://library.gnome.org/devel/gtk/stable/GtkRecentChooser.html
http://library.gnome.org/devel/gtk/stable/gtk-High-level-Printing-API.html#GtkPrintOperationPreview
http://library.gnome.org/devel/gtk/stable/GtkTreeSortable.html
http://library.gnome.org/devel/gtk/stable/gtk-GtkTreeView-drag-and-drop.html#GtkTreeDragDest
http://library.gnome.org/devel/gtk/stable/gtk-GtkTreeView-drag-and-drop.html#GtkTreeDragSource
http://library.gnome.org/devel/gtk/stable/GtkTreeModel.html
http://library.gnome.org/devel/gtk/stable/GtkFileChooser.html
http://library.gnome.org/devel/gtk/stable/GtkEditable.html
http://library.gnome.org/devel/gtk/stable/GtkCellLayout.html
http://library.gnome.org/devel/gtk/stable/GtkCellEditable.html
http://library.gnome.org/devel/gtk/stable/gtk-Orientable.html#GtkOrientable
http://library.gnome.org/devel/gtk/stable/GtkActivatable.html
http://library.gnome.org/devel/gtk/stable/gtk-gtkbuildable.html#GtkBuildable
http://library.gnome.org/devel/gtk/stable/GtkPrinter.html#GtkPrintBackend
http://library.gnome.org/devel/gtk/stable/GtkTooltip.html
http://library.gnome.org/devel/gtk/stable/GtkWindowGroup.html
http://library.gnome.org/devel/gtk/stable/GtkUIManager.html
http://library.gnome.org/devel/gtk/stable/GtkTreeStore.html
http://library.gnome.org/devel/gtk/stable/GtkTreeSelection.html
http://library.gnome.org/devel/gtk/stable/GtkTreeModelSort.html
http://library.gnome.org/devel/gtk/stable/GtkTreeModelFilter.html
http://library.gnome.org/devel/gtk/stable/GtkTextTagTable.html
http://library.gnome.org/devel/gtk/stable/GtkTextTag.html
http://library.gnome.org/devel/gtk/stable/GtkTextMark.html
http://library.gnome.org/devel/gtk/stable/GtkTextView.html#GtkTextChildAnchor
http://library.gnome.org/devel/gtk/stable/GtkTextBuffer.html
http://library.gnome.org/devel/gtk/stable/GtkStyle.html
http://library.gnome.org/devel/gtk/stable/GtkStatusIcon.html
http://library.gnome.org/devel/gtk/stable/GtkSizeGroup.html
http://library.gnome.org/devel/gtk/stable/GtkSettings.html
http://library.gnome.org/devel/gtk/stable/GtkRecentManager.html
http://library.gnome.org/devel/gtk/stable/gtk-Resource-Files.html#GtkRcStyle
http://library.gnome.org/devel/gtk/stable/GtkPrintSettings.html
http://library.gnome.org/devel/gtk/stable/gtk-High-level-Printing-API.html#GtkPrintOperation
http://library.gnome.org/devel/gtk/stable/GtkPrintJob.html
http://library.gnome.org/devel/gtk/stable/GtkPrintContext.html
http://library.gnome.org/devel/gtk/stable/GtkPrinter.html
http://library.gnome.org/devel/gtk/stable/GtkPageSetup.html
http://library.gnome.org/devel/gtk/stable/gtk-Filesystem-utilities.html#GtkMountOperation
http://library.gnome.org/devel/gio/unstable/GMountOperation.html
http://library.gnome.org/devel/gtk/stable/GtkListStore.html
http://library.gnome.org/devel/gtk/stable/GtkIMMulticontext.html
http://library.gnome.org/devel/gtk/stable/GtkIMContextSimple.html

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

typedef enum
{

GDK_NOTHING = -1, a special code to indicate a null event.
GDK_DELETE = 0, the window manager has requested that the toplevel

window be hidden or destroyed, usually when the
user clicks on a special icon in the title bar.

GDK_DESTROY = 1, the window has been destroyed.
GDK_EXPOSE = 2, all or part of the window has become visible and

needs to be redrawn.
GDK_MOTION_NOTIFY = 3, the pointer (usually a mouse) has moved.
GDK_BUTTON_PRESS = 4, a mouse button has been pressed.
GDK_2BUTTON_PRESS = 5, a mouse button has been double-clicked (clicked

twice within a short period of time). Note that
each click also generates a GDK_BUTTON_PRESS event.

GDK_3BUTTON_PRESS = 6, a mouse button has been clicked 3 times in a short
period of time. Note that each click also generates
a GDK_BUTTON_PRESS event.

GDK_BUTTON_RELEASE = 7, a mouse button has been released.
GDK_KEY_PRESS = 8, a key has been pressed.
GDK_KEY_RELEASE = 9, a key has been released.
GDK_ENTER_NOTIFY = 10, the pointer has entered the window.
GDK_LEAVE_NOTIFY = 11, the pointer has left the window.
GDK_FOCUS_CHANGE = 12, the keyboard focus has entered or left the window.
GDK_CONFIGURE = 13, the size, position or stacking order of the window

has changed. Note that GTK+ discards these events
for GDK_WINDOW_CHILD windows.

GDK_MAP = 14, the window has been mapped.
GDK_UNMAP = 15, the window has been unmapped.
GDK_PROPERTY_NOTIFY = 16, a property on the window has changed or was

deleted.
GDK_SELECTION_CLEAR = 17, the application has lost ownership of a selection.
GDK_SELECTION_REQUEST= 18, another application has requested a selection.
GDK_SELECTION_NOTIFY = 19, a selection has been received.
GDK_PROXIMITY_IN = 20, an input device has moved into contact with a

sensing surface
GDK_PROXIMITY_OUT = 21, an input device has moved out of contact with a

sensing surface.
GDK_DRAG_ENTER = 22, the mouse has entered the window while a drag is in

progress.
GDK_DRAG_LEAVE = 23, the mouse has left the window while a drag is in

progress.
GDK_DRAG_MOTION = 24, the mouse has moved in the window while a drag is

in progress.
GDK_DRAG_STATUS = 25, the status of the drag operation initiated by the

window has changed.
GDK_DROP_START = 26, a drop operation onto the window has started.
GDK_DROP_FINISHED = 27, the drop operation initiated by the window has

completed.
GDK_CLIENT_EVENT = 28, a message has been received from another

application.
GDK_VISIBILITY_NOTIFY= 29, the window visibility status has changed.
GDK_NO_EXPOSE = 30, indicates that the source region was completely

available when parts of a drawable were copied.

25

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
GTK+ Lesson 2

GDK_SCROLL = 31, the scroll wheel was turned
GDK_WINDOW_STATE = 32, the state of a window has changed. See

GdkWindowState for the possible window states
GDK_SETTING = 33, a setting has been modified.
GDK_OWNER_CHANGE = 34, the owner of a selection has changed.
GDK_GRAB_BROKEN = 35, a pointer or keyboard grab was broken.

} GdkEventType;

The conversion of events to signals by GTK+:

Event Type GtkWidget Signal Propagated? Grabbed?

GDK_DELETE "delete_event" No No

GDK_DESTROY "destroy_event" No No

GDK_EXPOSE "expose_event" No No

GDK_MOTION_NOTIFY "motion_notify_event" Yes Yes

GDK_BUTTON_PRESS "button_press_event" Yes Yes

GDK_2BUTTON_PRESS "button_press_event" Yes Yes

GDK_3BUTTON_PRESS "button_press_event" Yes Yes

GDK_BUTTON_RELEASE "button_release_event" Yes Yes

GDK_KEY_PRESS "key_press_event" Yes Yes

GDK_KEY_RELEASE "key_release_event" Yes Yes

GDK_ENTER_NOTIFY "enter_notify_event" No Yes

GDK_LEAVE_NOTIFY "leave_notify_event" No Yes

GDK_FOCUS_CHANGE "focus_in_event",
"focus_out_event"

No No

GDK_CONFIGURE "configure_event" No No

GDK_MAP "map_event" No No

GDK_UNMAP "unmap_event" No No

GDK_PROPERTY_NOTIFY "property_notify_event" No No

GDK_SELECTION_CLEAR "selection_clear_event" No No

GDK_SELECTION_REQUEST "selection_request_event" No No

GDK_SELECTION_NOTIFY "selection_notify_event" No No

GDK_PROXIMITY_IN "proximity_in_event" Yes Yes

GDK_PROXIMITY_OUT "proximity_out_event" Yes Yes

GDK_CLIENT_EVENT "client_event" No No

GDK_VISIBILITY_NOTIFY "visibility_notify_event" No No

GDK_NO_EXPOSE "no_expose_event" No

26

	A First GTK+ Program
	Tasks in Creating GTK Programs
	Initializing the Environment
	The GTK Object Hierarchy
	Widgets
	Object Types and Casting

	Creating Widgets and Setting Their Attributes
	About Sizes

	Registering Callback Functions
	Defining the Instance Hierarchy
	Showing The Widgets
	Starting the Main Event Loop

	A Second GTK+ Application
	The GtkLabel Widget
	About Container Widgets
	Size Requisition and Allocation

	Showing Widgets
	Signals and Callback Functions
	Signals and Events
	Registering Callback Functions
	Callback Functions
	Events and Event Types

	 Processing Signals and Events
	Quitting

	A Third Example
	GObject Properties
	Appendix
	Object Hierarchy
	Events in GDK

