
UNIX Lecture Notes
Chapter 9 Interprocess Communication, Part II

Prof. Stewart Weiss

Chapter 9 Interprocess Communication, Part II

Concepts Covered

Sockets
API: dup, dup2, fpathconf, gethostbyname, mk-

�fo, mknod, pipe, pclose, popen, select, setsid,
shutdown, syslog, tee.

9.1 Sockets

Pipes are a good segue into sockets. Sockets are used like pipes in many ways but, unlike pipes,
they can be used across networks. Sockets allow unrelated processes on di�erent computers on a
network to exchange data through a channel, using ordinary read() and write() system calls. We
call this remote interprocess communication. Formally, a socket is an endpoint of communication
between processes. Although sockets are used primarily across networks, they can also be used on
a single host in place of pipes.

9.1.1 Background

The development of sockets derives from the Berkeley distributions of UNIX in the early 1980's,
having �rst appeared in 4.2BSD. In 1987, AT&T developed a di�erent API for remote interprocess
communication in their System V Release 3 (SVR3), called the Transport Level Interface (TLI).
The Transport Layer Interface was the System V answer to the BSD sockets programming interface.
TLI was later standardized as XTI, the X/Open Transport Interface.

In many ways, TLI has advantages over sockets. TLI and XTI were widely used and preferred over
the POSIX Sockets API. They are still supported in SVR4-derived operating systems and systems
such as Solaris and Mac OS. Today, the UNIX 03 Single UNIX Speci�cation declares POSIX Sockets
as the preferred API for new transport protocols.

Because sockets can be accessed like �les and work the same whether on a local machine or across a
network, programming them is easier than TLI programming, which requires many more structures.
For this reason we focus on sockets here. In order to understand how to use sockets, you need to
know the basics of networks.

9.1.2 Connections

There are two ways in which sockets can be used, corresponding roughly to the di�erence be-
tween making a telephone call and having an email conversation with someone. When you make a
telephone call to someone, you have a conversation over a dedicated communication channel, the
telephone line, and you stay connected with the person on the other end for the duration of the call.
In socket parlance this is called a connection oriented model. When you have an email conversation
with someone, the messages are sent to the other person across di�erent paths, and there is no
dedicated connection. In fact there is no guarantee that the messages that you send will arrive in
the order you send them, and the only way for the person who receives them to know who sent

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
1

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 9 Interprocess Communication, Part II

Prof. Stewart Weiss

them is for them to have a return address in their message header. In socket parlance this is the
connection-less model.

The connection oriented model uses the Transmission Control Protocol, known as TCP. The
connection-less model uses the User Datagram Protocol, or UDP. There are many important dif-
ferences between TCP and UDP, or equivalently, between connection oriented and connection-less
models, but we will not go into them at length here. The most important di�erences are that TCP
provides a reliable, full-duplex, sequenced channel with �ow control. (Flow control is the process of
managing the rate of data transmission so that senders and receivers can operate at di�erent speeds
without loss of data or retransmissions.) UDP can be full-duplex but it is not reliable (no guarantee
of packet delivery), not sequenced (packets can arrive in di�erent order than they were sent), and
has no �ow control (a sender can send faster than the receiver can receive).

9.1.3 Communication Basics

In order to understand how to program with sockets, you need to have a basic understanding of
the important concepts that underlie their use. This includes network addresses, communication
domains (not internet domains), protocol families, and socket types.

Network Addresses, Ports, and Socket Addresses

For two processes to communicate, they need to know each other's network addresses. At the level
of socket programming, a network address consists of two parts: an internet (IP) address and a port
number. The IP address, if 32 bits, consists of four 8-bit octets, and is expressed in the standard
dot-notation as in "146.95.2.131". These 32-bit address are known as IPv4 addresses. In 1995,
a 128-bit address was developed, known as IPv6. Some computers have multiple network interface
cards and therefore may have multiple internet addresses. It used to be the case that internet
addresses had a speci�c structure and were divided into address classes. That is no longer the case.
They are now just �at addresses.

The kernel does not represent IP addresses as strings of octets � that would be ine�cient. It uses
the in_addr_t data type, de�ned in <arpa/inet.h>, to represent an IP address. However, we will
see that there are functions to convert from one format to the other.

Each server on a machine has to have a speci�c port that to use. There are many analogies that we
could use, but if you think of an IP address as specifying a speci�c company's main telephone line,
then the port is like a telephone extension within the company. The server uses a speci�c port for
its services and the clients have to know the port number in order to contact the server. A port is
a 16-bit integer.

Certain port numbers are well-known and reserved by particular applications and services. For
example, port 7 is for echo servers, 13 for daytime servers, 22 for SSH, 25 for SMTP, and 80 for
HTTP. Port numbers from 1 to 1023 are the well-known ports. To see a list of the port numbers in
use, take a look at the �le /etc/services.

Ports 1024 through 49151 are registered ports. These numbers are not controlled and a service can
use one if it is not already in use.

Ports 49152 through 65536 cannot be used. They are called ephemeral ports, which are assigned
automatically by TCP or UDP for client use.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
2

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 9 Interprocess Communication, Part II

Prof. Stewart Weiss

The lsof command can be used to view the ports that are currently open. The command is actually
more general than this � it can be used to view all open �les. To see a list of open ports, use either

lsof -Pnl +M -i4

(the i4 restricts to IPv4), or

netstat -lptu

to see listening sockets for both TCP and UDP. Read the man pages for lsof and netstat to learn
more about these commands.

A socket address is a combination of a network address and a port.

Domains and Protocol Families

In order for two processes to communicate, they must use the same protocol. Part of the procedure
for establishing communication involves specifying the communication domain and the protocol
family. For example, the domain AF_INET speci�es that the protocol family is the IPV4 set of
protocols. Within that family there may be a choice of a speci�c protocol, such as TCP or UDP.
The domain might instead be AF_UNIX, which speci�es that the protocol family is restricted to the
local machine. In this case there will not be a choice of protocol. When a socket is created, the
domain and protocol are speci�ed as two of the arguments to the function. The socket (2) man
page lists various domains together with the man pages that contain possible protocols that can be
used with them.

Socket Types

When a socket is created, its type must be speci�ed. The type corresponds to the type of connec-
tion. A connection oriented communication uses stream sockets, of type SOCK_STREAM, whereas a
connection-less communication uses datagram sockets, of type SOCK_DGRAM. There are also raw sock-
ets, with type SOCK_RAW. Linux provides several other socket types, and POSIX requires support
for the type, SOCK_SEQPACKET.

9.1.4 The Socket Interface1

A socket is identi�ed within the operating system by an identi�er. The socket() system call creates
a socket and returns a �le descriptor that represents it. We do not have to know how a socket is
implemented to use it, however, you should think of a socket as something like the �le structure that
represents a �le in UNIX. It is an internal structure in the kernel, accessed through a �le descriptor,
representing one end of a communication channel that has a speci�c network address, family (also
called domain), port number, and socket type.

The socket() function creates what is called an unnamed socket:

1This section must be updated. Some of the methods described are now obsolete.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 9 Interprocess Communication, Part II

Prof. Stewart Weiss

#include <sys/socket.h>

int socket(int domain, int type, int protocol);

The domain is an integer specifying the address family and protocol. These families are de�ned in
<sys/socket.h>. Some of the common domain values are

Name Purpose

AF_UNIX Local communication

AF_INET IPv4 Internet protocols

AF_INET6 IPv6 Internet protocols

The type can be one of SOCK_STREAM, SOCK_DGRAM, or SOCK_RAW or several others. The SOCK_STREAM
type is the connection model, with full-duplex, reliable, sequenced transmissions.

The protocol can be used to specify a particular protocol in the case that there is more than one
choice for the particular type of socket and address family. Setting it to 0 ensures that the kernel
will pick the appropriate protocol.

The return value of socket() is a �le descriptor that can be used to read or write the socket. As
an example,

sockfd = socket(AF_INET, SOCK_STREAM, 0);

creates a connection-oriented socket that can be used for communication over the internet.

9.1.5 Setting Up a Connection Oriented Service

We will go through the steps that a server must take in a connection-oriented model. The basic
steps that a server must take are below. Details on how to use the speci�c functions will follow.

1. Create a socket using socket(). This creates an endpoint of communication, but does not
associate any particular internet address or port number to it.

2. Bind the socket to a local protocol address using bind(). This gives a "name" to the socket.

3. The socket created so far is an active socket, one that can connect to other sockets actively,
like dialing another telephone number. Since this is the server, the purpose of this socket is not
to "dial-out" but to listen for incoming calls. Therefore, the server must now call listen()
to tell the kernel that all it really wants to do is listen for incoming messages and set a limit
on its queue size. This call will basically put the socket into the LISTEN state in the TCP
protocol.

After listen() has returned, two queues have been created for the server. One queue stores
incoming connection requests that have not yet completed the TCP handshake protocol. The
other queue stores incoming requests that have completed the handshake. These requests are
ready to be serviced.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
4

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 9 Interprocess Communication, Part II

Prof. Stewart Weiss

4. Enter a loop in which it repeatedly accepts new connections and processes them. It can accept
a new connection by calling accept(). The accept() function removes the request at the
front of the completed connection queue and creates a second socket that the server can use
for talking with this client. The return value of accept() is a �le descriptor that represents
this socket. The original socket continues to exist. The idea is that the original socket is
just for listening, not talking to clients. In fact it is called the listening socket, and the new
socket is called the connected socket. When the connection is closed, this connected socket is
removed.

That is the essence of the server's tasks. Now what remains is to see how to program this.

9.1.6 Programming a Connection Oriented Server

We have already seen how the socket() call works. The step of binding a local protocol address
to the socket is carried out with bind(), but before we look at bind() we need to see how these
addresses are represented. A generic socket address is de�ned by the sockaddr structure de�ned in
<sys/socket.h>:

struct sockaddr {

sa_family_t sa_family; /* address family */

char sa_data[]; /* socket address */

};

This is a generic socket address structure because it is not speci�c to any one address family. When
you call bind(), you will be specifying a particular family, such as PF_INET or PF_UNIX. For each
of these there is a di�erent form of socket address structure. The address structure for PF_INET,
de�ned in <netinet/in.h>, would be

struct sockaddr_in {

sa_family_t sin_family; /* internet address family */

in_port_t sin_port; /* port number */

struct in_addr sin_addr; /* IP address */

unsigned char sin_zero[8]; /* padding */

};

The bind() system call takes the socket �le descriptor returned by socket() and an address struc-
ture like the one above, and "binds" them together to form the end of a socket that can now be
used by processes living somewhere in the internet to �nd this server:

#include <sys/types.h>

#include <sys/socket.h>

int bind(int sockfd, const struct sockaddr *address,

socklen_t addrlen);

Putting these few steps together, we might start out with the following code:

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
5

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 9 Interprocess Communication, Part II

Prof. Stewart Weiss

int listenfd;

int size = sizeof(struct sockaddr_in);

struct sockaddr_in server = {PF_INET, 25555, INADDR_ANY};

if ((listenfd = socket(PF_INET, SOCK_STREAM, 0)) == -1) {

perror("socket call failed");

exit(1);

}

if (bind(listenfd, (struct sockaddr *) &server, size) == -1) {

perror(" bind call failed");

exit(1);

}

The sockaddr_in struct is initialized to use the IPv4 protocol family with a port of 25555, large
enough to be safe for our purposes, and INADDR_ANY as the local IP address. Specifying this constant
means that if there is more than one IP address for this host, any will do. The bind call is given
the listenfd descriptor, the address of this struct, and its size.

The next step is to call listen(), which is de�ned by

#include <sys/socket.h>

int listen(int sockfd, int queue_size);

The �rst argument is the descriptor for the already bound socket, and the second is the maximum
size of the queue of pending (incomplete) connections.

The accept() call is de�ned as follows:

#include <sys/types.h>

#include <sys/socket.h>

int accept(int sockfd, struct sockaddr *addr,

socklen_t *addrlen);

The accept() call expects the socket descriptor of a socket that has been created with socket(),
bound to a local address with bind(), and set to listen with listen(). The second argument, if not
NULL, is a pointer to a generic socket address structure, and the third is the address of a variable that
stores its length in bytes. After the call, the address will be �lled with the client's socket address,
and the size will re�ect the true size of the client's speci�c socket address struct. The return value
will be the descriptor of a connected socket. The accept() will block waiting for a connection.

We can put all of this together in a simple concurrent server that, yes, once again, does lower to
upper case conversion. This time it will handle just one character at a time. We will move on to a
more interesting task afterwards. This code is based on an example from [Haviland et al]. It forks
a child process to handle each incoming connection. The client and the server will share a common
header �le, sockdemo1.h, which is displayed �rst, followed by the server code.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
6

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 9 Interprocess Communication, Part II

Prof. Stewart Weiss

L i s t i n g sockdemo1 . h

#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <s t r i n g . h>
#inc lude <s t d l i b . h>
#inc lude <sys / types . h>
#inc lude <sys / socket . h>
#inc lude <ne t i n e t / in . h>
#inc lude <netdb . h>
#inc lude <ctype . h>
#inc lude <s i g n a l . h>
#inc lude <f c n t l . h>
#inc lude <errno . h>

#de f i n e SOCKADDR (s t r u c t sockaddr ∗)
#de f i n e SIZE s i z e o f (s t r u c t sockaddr_in)
#de f i n e DEFAULT_HOST " l o c a l h o s t "
#de f i n e PORT 25555
#de f i n e ERROR_EXIT(_mssg , _num) pe r ro r (_mssg) ; e x i t (_num) ;
#de f i n e MAXLINE 4096

Comments.

• (Perhaps out of laziness, I �nally wrote a little macro (ERROR_EXIT) so that I do not have
to keep typing the perror(); exit() combination on failures of system calls. It is included
in this header �le. Rather than making it a function, I made it a macro so that the code is
faster.)

• The SOCKADDR macro reduces typing.

• The server and client are compiled with the same header so that the port number is hard-
coded into each. The number 25555 appears to be unused on all of the machines I have run
this example on.

The server code follows.

L i s t i n g sockdemo1_server . c

#inc lude "sockdemo1 . h"
#inc lude <sys /wait . h>

#de f i n e LISTEN_QUEUE_SIZE 5

/∗ The f o l l ow i n g typede f s i m p l i f i e s the func t i on d e f i n i t i o n a f t e r i t ∗/
typede f void S ig func (i n t) ; /∗ f o r s i g n a l hand le r s ∗/

/∗ ove r r i d e e x i s t i n g s i g n a l func t i on to handle non−BSD systems ∗/
S ig func ∗ S igna l (i n t s igno , S ig func ∗ func) ;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
7

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 9 Interprocess Communication, Part II

Prof. Stewart Weiss

/∗ S igna l hand le r s ∗/
void on_sigpipe (i n t s i gno) ;

void on_sigchld (i n t s i gno) ;

/∗∗/

/∗ This needs to be g l oba l because the s i g n a l handler has to a c c e s s i t ∗/
i n t connect i on fd ;

/∗∗/
i n t main (i n t argc , char ∗ argv [])
{

i n t l i s t e n f d ; /∗ holds the f i l e d e s c r i p t o r f o r the socket ∗/
char c ; /∗ t h i s example i s a ToUpcase s e r v e r ∗/

/∗ A sockaddr_in s t r u c t i s a s t r u c t that s t o r e s address and ∗/
/∗ port in fo rmat ion f o r a socke t f o r network communications . ∗/
/∗ The sockaddr_in IS the socke t . In t h i s case i t i s an In t e rn e t ∗/
/∗ socke t (AF_INET) us ing port 7000 , and accept ing connect i ons ∗/
/∗ on any network i n t e r f a c e (INADDR_ANY) j u s t in case the host ∗/
/∗ has mu l t ip l e i n t e r f a c e s . ∗/

s t r u c t sockaddr_in s e r v e r = { AF_INET, PORT, { INADDR_ANY } } ;

/∗ The f o l l ow i n g 2 l i n e s are here to dea l with s i g n a l s
that the s e r v e r can r e c e i v e . the f i r s t i s SIGPIPE . I f
the s e r v e r t r i e s to send data "down the socket " but the
proce s s on the other end has died , or the connect ion was
broken f o r some other reason , the s e r v e r w i l l r e c e i v e a SIGPIPE

s i g n a l . To keep i t a l i v e , i t handles the s i g n a l .

The s e r v e r w i l l a l s o r e c e i v e SIGCHLD s i g n a l s when i t s ch i l d r en
terminate .

∗/

S igna l (SIGCHLD, on_sigchld) ;
S i gna l (SIGPIPE , on_sigpipe) ;

/∗ The socket () c a l l c r e a t e s an endpoint o f communication .
In the c a l l below , the endpoint i s f o r an In t e rn e t socket
(PF_INET) o f the connect ion−o r i en t ed type (i . e . , TCP rathe r
than UDP) . The th i rd parameter i s the p ro to co l . A 0 t e l l s
the compi ler to use the d e f au l t p ro to co l f o r the SOCK_STREAM,
which i s TCP/IP . The socke t () c a l l r e tu rn s a f i l e d e s c r i p t o r
that the proce s s can use f o r l i s t e n i n g to the socket .

∗/

i f ((l i s t e n f d = socket (PF_INET, SOCK_STREAM, 0)) == −1) {
ERROR_EXIT(" socket c a l l f a i l e d " ,1)

}

/∗ The s e r v e r now has to bind the socke t f i l e d e s c r i p t o r , l i s t e n f d ,

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
8

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 9 Interprocess Communication, Part II

Prof. Stewart Weiss

to the socket data s t r u c tu r e . This , in e f f e c t , connects the f i l e
d e s c r i p t o r to the ac tua l network/ port address .

∗/
i f (bind (l i s t e n f d , (s t r u c t sockaddr ∗) &server , SIZE) == −1) {

ERROR_EXIT(" bind c a l l f a i l e d " ,1)
}

/∗ The next s tep f o r the s e r v e r i s to l i s t e n f o r incoming connect ion
r eque s t s . The l i s t e n () c a l l e s t a b l i s h e s the numberof s imultaneous
connect i ons that the s e r v e r w i l l handle . I . e . , i t i s the s i z e o f
the queue o f r ece ived , but not accepted r eque s t s . Here we accept
LISTEN_QUEUE_SIZE reque s t s .

∗/
i f (l i s t e n (l i s t e n f d , LISTEN_QUEUE_SIZE) == −1) {

ERROR_EXIT(" l i s t e n c a l l f a i l e d " ,1)
}

/∗ s t a r t the i n f i n i t e loop to l i s t e n f o r and accept incoming ∗/
/∗ connect ion r eque s t s ∗/
f o r (; ;)
{

/∗ The accept c a l l r e tu rn s the next completed connect ion from the
f r on t o f the completed connect ion queue . I f the re are no
completed connect i ons in the queue , the p roce s s b locks
The accept c a l l r e tu rn s a f i l e d e s c r i p t o r that can be used
to read (recv) and/or wr i t e (send) data in the socket .
The returned d e s c r i p t o r i s the connected socke t d e s c r i p t o r ;
the l i s t e n i n g d e s c r i p t o r remains a v a i l a b l e to l i s t e n to the
socke t .

∗/
i f ((connec t i on fd = accept (l i s t e n f d , NULL, NULL)) == −1){

i f (EINTR == errno)
cont inue ;

e l s e
pe r ro r (" accept c a l l f a i l e d ") ;

}

switch (f o rk ()) {
case −1:

ERROR_EXIT(" fo rk c a l l f a i l e d " ,1)
case 0 :

/∗
The ch i l d execute s t h i s code .

You can use the ord inary read and wr i t e c a l l s , but
recv and send are more f l e x i b l e . recv a l l ows peeking
without reading , wa i t ing f o r f u l l bu f f e r s , and d i s c a rd ing
a l l but out−of−band data .

∗/
whi l e (recv (connect ionfd , &c , 1 , 0) > 0)
{

c = toupper (c) ; /∗ convert c to upeprcase ∗/
send (connect ionfd , &c , 1 , 0) ; /∗ send i t back ∗/

}

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
9

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 9 Interprocess Communication, Part II

Prof. Stewart Weiss

c l o s e (connect i on fd) ;
e x i t (0) ;

d e f au l t :
/∗ s e r v e r code ∗/
c l o s e (connect i on fd) ;
/∗ note that the s e r v e r cannot wait f o r the ch i l d proce s s e s , ∗/
/∗ otherwi se i t w i l l not re turn to the top o f the loop to ∗/
/∗ accept new connect i ons . Ins tead i t has a SIGCHLD handler . ∗/

}
}

}

/∗ i f a SIGPIPE i s r e c e i v ed : ∗/
void on_sigpipe (i n t s i g)
{

c l o s e (connect i on fd) ;
e x i t (0) ;

}

void on_sigchld (i n t s i gno)
{

pid_t pid ;
i n t s t a tu s ;

whi l e ((pid = waitp id (−1 , &status , WNOHANG)) > 0)
;

r e turn ;
}

S ig func ∗ S igna l (i n t s igno , S ig func ∗ func)
{

s t r u c t s i g a c t i o n act , oact ;

act . sa_handler = func ;
s igemptyset (&act . sa_mask) ;
act . sa_f lags = 0 ;
i f (SIGALRM != s igno) {

act . sa_f lags |= SA_RESTART;
}
i f (s i g a c t i o n (s igno , &act , &oact) < 0)

re turn (SIG_ERR) ;
re turn (oact . sa_handler) ;

}

Comments.

• This program uses a user-de�ned Signal() function to encapsulate the logic of registering the
signal handlers. Since we have been registering multiple handlers in most of our programs, it
would have been a good idea to create this function earlier and put it in a library to reuse.
The idea for this is from [Stevens].

• The program could have used ordinary read() and write() system calls. Instead, as a way to

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
10

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 9 Interprocess Communication, Part II

Prof. Stewart Weiss

introduce two socket-speci�c communications primitives, it uses recv() and send(). recv()
is one of a set of three socket-reading functions:

#include <sys/types.h>

#include <sys/socket.h>

ssize_t recv(int s, void *buf, size_t len, int flags);

ssize_t recvfrom(int s, void *buf, size_t len, int flags,

struct sockaddr *from, socklen_t *fromlen);

ssize_t recvmsg(int s, struct msghdr *msg, int flags);

• The recvfrom() and recvmsg() functions are the most general. The prototype for recv()
is the same as that of read() except that it has a fourth argument that can be used to set
various �ags to control how the recv() behaves. The �ags can be used to turn on non-blocking
operation (MSG_DONTWAIT), to notify the kernel that the process wants to receive out-of-band
data (MSG_OOB), or to peek at the data without reading it (MSG_PEEK), to name a few. In
our program, no �ags are used, so the fourth argument is zero, and recv(s, buf, n, 0) is
identical to read(s, buf, n).

• The send() function is also one of a set of three:

#include <sys/types.h>

#include <sys/socket.h>

ssize_t send(int s, const void *buf, size_t len, int flags);

ssize_t sendto(int s, const void *buf, size_t len, int flags,

const struct sockaddr *to, socklen_t tolen);

ssize_t sendmsg(int s, const struct msghdr *msg, int flags);

• The sendto() and sendmsg() functions are the most general. The prototype of send() is
identical to that of write() except for the additional argument. Like recv(), the fourth
argument of send() is a set of �ags that can be or-ed together. Some of the �ags are the
same, such as MSG_OOB, which allows the process to send out-of-band data. See the man page
for more details. We will return to the use of sendto() and recvfrom() when we look at a
connection-less server.

The code for the client is next.

L i s t i n g sockdemo1_client . c

#inc lude "sockdemo1 . h"

i n t main (i n t argc , char ∗∗ argv)
{

i n t sock fd ;
char c , rc ;
char ip_name [2 5 6] = "" ;
s t r u c t sockaddr_in s e r v e r ;
s t r u c t hostent ∗host ;

i f (argc < 2)

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
11

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 9 Interprocess Communication, Part II

Prof. Stewart Weiss

s t r cpy (ip_name , DEFAULT_HOST) ;
e l s e

s t r cpy (ip_name , argv [1]) ;

i f ((host = gethostbyname (ip_name)) == NULL) {
ERROR_EXIT(" gethostbyname " , 1) ;

}

memset(&server , 0 , s i z e o f (s e r v e r)) ;
memcpy(& s e rv e r . sin_addr , SOCKADDR ∗host−>h_addr_list , SIZE) ;
s e r v e r . s in_fami ly = AF_INET;
s e r v e r . s in_port = PORT;

i f ((sock fd = socket (AF_INET, SOCK_STREAM, 0)) == −1) {
ERROR_EXIT(" s o c k e t c a l l f a i l e d " ,1)

}

i f (connect (sockfd , SOCKADDR &server , s i z e o f (s e r v e r)) == −1) {
ERROR_EXIT(" connect c a l l f a i l e d " , 1) ;

}

f o r (rc = '\n ' ; ;) {
i f (' \n ' == rc)

p r i n t f (" Input a lowercase charac t e r \n ") ;
c = getchar () ;
wr i t e (sockfd , &c , 1) ;
i f (read (sockfd , &rc , 1) > 0)

p r i n t f ("%c " , rc) ;
e l s e {

p r i n t f (" s e r v e r has died \n ") ;
c l o s e (sock fd) ;
e x i t (1) ;

}
}

}

Comments.

• The client does hostname-to-address translation to make it more generic. The user can supply
the name of the server on the command line rather than having to remember the IP address. If
the IP address changes, the program still works. The gethostbyname() call returns a pointer
to a hostent structure, given a string that contains a valid hostname.

#include <netdb.h>

extern int h_errno;

struct hostent *gethostbyname(const char *name);

• The hostent struct is de�ned in the <netdb.h> header �le:

struct hostent {

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
12

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 9 Interprocess Communication, Part II

Prof. Stewart Weiss

char *h_name; /* official name of host */

char **h_aliases; /* alias list */

int h_addrtype; /* host address type */

int h_length; /* length of address */

char **h_addr_list; /* list of addresses */

}

#define h_addr h_addr_list[0] /* for backward compatibility */

• The h_name �eld is the o�cial name of the host. For example, if it is given the name "eniac"
when running on a host on our network, it is able to resolve the name, and the h_name �eld
will be �lled in with "eniac.geo.hunter.cuny.edu". The aliases member is a pointer to a
list of strings, each of which is an alias, i.e., another name listed in the hosts database for
the same machine. The h_addr_list is a pointer to a list of internet addresses for this host.
If the host has just one network interface card, then only h_addr_list[0] is de�ned. Each
entry is of type in_addr, which is why, in the client code, if can be assigned directly (with
a cast) to the sin_addr �eld of the sock_addr structure. We do not use the h_addrtype or
h_length �elds here.

The client uses ordinary read() and write() calls for its I/O operations.

9.1.7 A Connection-Oriented Client Using Multiplexed I/O

Consider the client from the upcase example in Chapter 8. It reads a line from standard input,
writes it into a pipe, and then reads the converted text from a second pipe. In that example,
two pipes were needed because a pipe cannot be used as a bi-directional channel. However, we
can replace the pair of pipes by a single socket, which can then be used for both sending the raw
text to the server and receiving the converted text from it. In addition, by making the socket an
Internet-domain socket, the client and server can be on di�erent machines.

If we keep the original design for the client but just replace the pipes by a socket, the client would
read the raw text from standard input, write it to the socket, and then read the converted text from
the same socket, in a loop of the form

while (true) {

get text from standard input;

write text to socket;

read converted text from socket;

write response on standard output;

}

Since input can be redirected, it can arrive much faster than the responses that it receives from
the server, because the server might be a long distance away. The client would spend most of its
time blocked on the call to read the socket, even though both the server and the socket itself could
handle much larger throughput. The same thing could happen in the interactive case as well if the
user enters text very quickly but the round-trip time for the socket is large. In this case the client
would be delayed in displaying a prompt to the user on the terminal. Therefore, it makes sense in

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
13

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 9 Interprocess Communication, Part II

Prof. Stewart Weiss

this client to multiplex the standard input and the socket input using the select() call. By using
the select() call, the client will only block if neither the user nor the server has data to read. As
long as text arrives on the standard input stream, it will be forwarded to the server. If text arrives
on standard input much faster than the round-trip time, the text will keep being sent to the server,
which will process the lines one after the other and send them back in a steady stream.

An analogy will help. Imagine a thirty-person �re brigade trying to put out a �re with a single
bucket. The bucket is �lled with water and passed from one person to the next to the �re, poured
on the �re, and then passed back to the water supply, where this is repeated. Suppose it takes one
minute for the round trip and the bucket holds 5 gallons of water. This supplies 5 gallons per minute
to the �re. Now suppose there are 60 buckets available. The �rst bucket is �lled and handed to
the next person, and the second bucket is �lled, and so on, until all 60 buckets are �lled. Assuming
the people know how to pass the full buckets past the empty buckets and the exchange rate is
uniform, although the round-trip time has not changed, there will be 60 buckets in the brigade at
each instant, and each second, a full bucket will arrive at the �re. The �re will be supplied 5 gallons
per second, or 300 gallons per minute.

This is how using select() can increase the throughput in the case that the bottleneck is the length
of time it takes for the data to make a round trip from client to server and back. The code follows.
It uses the same header �le as was used in sockdemo1. This client will not accept a �le name on
the command line; it uses a single command line argument, which is the name of the host on which
the server is running.

L i s t i n g sockdemo2_client . c
#inc lude <sys / types . h>
#inc lude <sys / socke t . h>
#inc lude <netdb . h>

#inc lude "sockdemo1 . h"

#de f i n e MAXFD(_x, _y) ((_x)>(_y)? (_x) : (_y))

i n t main (i n t argc , char ∗ argv [])
{

i n t sock fd ;
char ip_name [2 5 6] = "" ;
fd_set r eads e t ;
i n t maxfd , n ;
char r e c v l i n e [MAXLINE] ;
char s end l i n e [MAXLINE] ;
i n t s , s td in_eof = 0 ;

s t r u c t addr in fo h in t s ;
s t r u c t addr in fo ∗ r e s u l t ;
s t r u c t addr in fo ∗ r e su l t i ng_addre s s ;
char po r t s t r [2 0] ;

/∗ Check i f the re i s a host name on command l i n e ;
i f not use d e f au l t ∗/

i f (argc < 2)
s t r cpy (ip_name , DEFAULT_HOST) ;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
14

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 9 Interprocess Communication, Part II

Prof. Stewart Weiss

e l s e
s t r cpy (ip_name , argv [1]) ;

p r i n t f (" Search ing f o r s e r v e r %s \n" , ip_name) ;

/∗ I n i t i a l i z e the h in t s addr in fo s t r u c tu r e be f o r e c a l l i n g
ge taddr in f o () . This i s used to d e f i n e c r i t e r i a to use
when i t s ea r che s f o r a s u i t a b l e host / port / s e r v i c e f o r
the c l i e n t .

∗/
memset(&hints , 0 , s i z e o f (s t r u c t addr in fo)) ; /∗ zero i t out ∗/
h in t s . a i_fami ly = AF_UNSPEC; /∗ a l low IPv4 or IPv6 ∗/
h in t s . ai_socktype = SOCK_STREAM; /∗ stream connect ion ∗/
h in t s . a i_ f l a g s = 0 ; /∗ no f l a g s ∗/
h in t s . a i_protoco l = 0 ; /∗ any pro to co l ∗/

/∗ convert numeric port to a s t r i n g ∗/
s p r i n t f (po r t s t r , "%d" , PORT) ;

/∗ Get the network i n f o ; i f non−zero return , the re was an e r r o r ∗/
i f (0 != (s = ge taddr in f o (ip_name , por t s t r , &hints , &r e s u l t))) {

/∗ c a l l g a i_s t r e r r o r () to get s t r i n g f o r e r r o r number ∗/
f p r i n t f (s tde r r , " g e taddr in f o : %s \n" , g a i_s t r e r r o r (s)) ;
e x i t (EXIT_FAILURE) ;

}

/∗ Search through every addr in fo s t r u c tu r e in the l i s t po inted to by the
r e s u l t po in t e r in the c a l l to ge taddr in f o () . These are the s t r u c t u r e s
conta in ing p o s s i b l e fami ly / socket−type / p ro to co l combinat ions . The
s t r u c t u r e s are ordered with in the l i s t by the r u l e s s p e c i f i e d in the
RFC 3484 standard , so the f i r s t one f o r which a socke t can be c reated
i s the one to use .

∗/
re su l t ing_addre s s = r e s u l t ;
whi l e (NULL != re su l t ing_addre s s) {

sock fd = socket (re su l t ing_addres s−>ai_family ,
r e su l t ing_addres s−>ai_socktype ,
r e su l t ing_addres s−>ai_protoco l) ;

i f (sock fd == −1) {
r e su l t ing_addre s s = resu l t ing_addres s−>ai_next ;
cont inue ;

}
i f (connect (sockfd , r e su l t ing_addres s−>ai_addr ,

r e su l t ing_addres s−>ai_addrlen) != −1)
break ; /∗ Success ∗/

c l o s e (sock fd) ;
r e su l t i ng_addre s s = resu l t ing_addres s−>ai_next ;

}

i f (r e su l t i ng_addre s s == NULL) { /∗ No address succeeded ∗/
f p r i n t f (s tde r r , "Could not connect \n ") ;
e x i t (EXIT_FAILURE) ;

}

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
15

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 9 Interprocess Communication, Part II

Prof. Stewart Weiss

f r e e add r i n f o (r e s u l t) ; /∗ No longe r needed ∗/

p r i n t f (" Connection made to s e r v e r \n ") ;

maxfd = MAXFD(f i l e n o (s td in) , sock fd) +1;

f o r (; ;) {
FD_ZERO(&readse t) ;
i f (s td in_eof == 0)

FD_SET(f i l e n o (s td in) , &readse t) ;
FD_SET(sockfd , &readse t) ;
i f (s e l e c t (maxfd , &readset , NULL, NULL, NULL) > 0) {

i f (FD_ISSET(sockfd , &readse t)) {
i f ((n = read (sockfd , r e c v l i n e , MAXLINE−1)) == 0) {

i f (s td in_eof == 1)
return 0 ;

e l s e
ERROR_EXIT(" Server terminated prematurely . " , 1) ;

}
r e c v l i n e [n] = ' \ 0 ' ;
f pu t s (r e cv l i n e , s tdout) ;

}

i f (FD_ISSET(f i l e n o (s td in) , &reads e t)) {
i f (f g e t s (s end l ine , MAXLINE−1, s td in) == NULL) {

std in_eof = 1 ;
shutdown (sockfd , SHUT_WR) ;
FD_CLR(f i l e n o (s td in) , &readse t) ;
cont inue ;

}
wr i t e (sockfd , s end l ine , s t r l e n (s end l i n e)) ;

}
}

}
return 0 ;

}

Comments.

• This client sends entire lines, one after the other, to the server. It appends a null character
to each line it receives before printing it to standard output, even though in principle all lines
received should be null-terminated, since they are identical to the null-terminated lines that
it sent to the server, except for conversion of lowercase to uppercase letters in the line.

• The shutdown(sockfd, SHUT_WR) system call turns o� writing to the socket. When the client
detects the end-of-�le on the standard input stream, it cannot close the socket completely,
because if it did, it would not receive any lines sent to the server but not yet converted to
uppercase. On the other hand, it has to send a noti�cation to the server that there is no more
input on the socket, so that the server's read() on the socket can return. The shutdown()

accomplishes this; the server's read() returns and the socket stays open until the server closes

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
16

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 9 Interprocess Communication, Part II

Prof. Stewart Weiss

its end of the socket. Without shutdown() there would be no way to achieve this. Its synopsis
is:

#include <sys/socket.h>

int shutdown(int s, int how);

Here, the integer how can be replaced by one of SHUT_WR, SHUT_RD, or SHUT_RDWR.

• Once the client detects the end-of-�le, it also sets a �ag for itself, stdin_eof, which it uses to
decide whether to set a bit in the descriptor mask for the standard input. If end-of-�le has
been detected, it stops setting that bit; otherwise it sets it. In addition, when the read()

on the socket returns 0 bytes, it uses this �ag to distinguish between two cases: whether the
server has stopped sending text because there is none left to send, or there was an error on
the socket before the end-of-�le condition occurred.

The server's main function is displayed below. Because the signal handling code is no di�erent in
this example than in sockdemo1_server.c, it is not included.

L i s t i n g sockdemo2_server . c

#inc lude "sockdemo1 . h"
#inc lude " sys /wait . h"

#de f i n e LISTEN_QUEUE_SIZE 5

/∗ The f o l l ow i n g typede f s i m p l i f i e s the func t i on d e f i n i t i o n a f t e r i t ∗/
typede f void S ig func (i n t) ; /∗ f o r s i g n a l hand le r s ∗/

/∗ ove r r i d e e x i s t i n g s i g n a l func t i on to handle non−BSD systems ∗/
S ig func ∗ S igna l (i n t s igno , S ig func ∗ func) ;

/∗ S igna l hand le r s ∗/
void on_sigchld (i n t s i gno) ;
void str_echo (i n t sock fd) ;

i n t main (i n t argc , char ∗∗ argv)
{

i n t l i s t e n f d , connfd ;
pid_t ch i l dp i d ;
socklen_t c l i l e n ;
s t r u c t sockaddr_in cl ient_addr , server_addr ;
void s ig_chld (i n t) ;

i f ((l i s t e n f d = socket (AF_INET, SOCK_STREAM, 0)) == −1) {
ERROR_EXIT(" socket c a l l f a i l e d " ,1)

}

bzero(&server_addr , s i z e o f (server_addr)) ;
server_addr . s in_fami ly = AF_INET;
server_addr . sin_addr . s_addr = htonl (INADDR_ANY) ;
server_addr . s in_port = PORT;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
17

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 9 Interprocess Communication, Part II

Prof. Stewart Weiss

i f (bind (l i s t e n f d , SOCKADDR &server_addr , s i z e o f (server_addr))
== −1) {
ERROR_EXIT(" bind c a l l f a i l e d " ,1)

}

i f (−1 == l i s t e n (l i s t e n f d , LISTEN_QUEUE_SIZE)) {
ERROR_EXIT(" l i s t e n c a l l f a i l e d " ,1)

}

S i gna l (SIGCHLD, on_sigchld) ;

f o r (; ;) {
c l i l e n = s i z e o f (c l i ent_addr) ;
i f ((connfd = accept (l i s t e n f d , SOCKADDR &cl ient_addr , &c l i l e n))

< 0) {
i f (EINTR == errno)

cont inue ; /∗ back to f o r () ∗/
e l s e

ERROR_EXIT(" accept e r r o r " , 1) ;
}

i f ((c h i l dp i d = fo rk ()) == 0) { /∗ ch i l d p roce s s ∗/
c l o s e (l i s t e n f d) ; /∗ c l o s e l i s t e n i n g socket ∗/
str_echo (connfd) ; /∗ proce s s the r eque s t ∗/
e x i t (0) ;

}
c l o s e (connfd) ; /∗ parent c l o s e s connected socke t ∗/

}
}

void str_echo (i n t sock fd)
{

s s i z e_t n ;
i n t i ;
char l i n e [MAXLINE] ;

f o r (; ;) {
i f ((n = read (sockfd , l i n e , MAXLINE−1)) == 0)
return ; /∗ connect ion c l o s ed by other end ∗/

f o r (i = 0 ; i < n ; i++)
i f (i s l owe r (l i n e [i]))

l i n e [i] = toupper (l i n e [i]) ;
wr i t e (sockfd , l i n e , n) ;

}
}

Comments.

All of the logic is encapsulated in the convert() function, which the child executes. convert()

reads the connected socket until it receives the end-of-�le and then it terminates, which causes the

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
18

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes
Chapter 9 Interprocess Communication, Part II

Prof. Stewart Weiss

child to exit in main.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
19

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

	Interprocess Communication, Part II
	Sockets
	Background
	Connections
	Communication Basics
	The Socket InterfaceThis section must be updated. Some of the methods described are now obsolete.
	Setting Up a Connection Oriented Service
	Programming a Connection Oriented Server
	A Connection-Oriented Client Using Multiplexed I/O

