
Software Design Lecture Notes Prof. Stewart Weiss
About Separate Compilation Units

About Compiling
What most people mean by the phrase "compiling a program" is actually two separate
steps in the creation of that program. The first step is proper compilation. Compilation is
translating high level programming instructions into machine language instructions. The
input to compilation is a source code file in a high level language such as C or C++.
Source code files have extensions such as ".c", ".cpp", or ".cc". The output of
compilation is an object file, which is not quite an executable file. Object files usually
have a ".o" or ".obj" extension.

Consider the code fragment
 #include <iostream>
 #include <math.h>
 using namespace std;
 double number;
 cout << "Enter a positive number here:";
 cin >> number;
 cout << "The square root is " << sqrt(number) << endl;

The first two lines tell the compiler to copy the contents of the header files iostream
and math.h into the program at those points in the file. The third line tells the compiler
to use the std namespace for resolving symbols, since the iostream header file just
copied into the program is declared within this std namespace. In other words, every
declaration and definition in this header file is contained within the namespace known as
std. A namespace is essentially just a scope, so all of iostream has scope std.

In particular, cout and cin are really known to the world outside of the std scope by
their proper names, std::cout and std::cin. If you wrote std::cout instead of
cout, std::cin instead of cin, and std::endl instead of endl. you could eliminate
the third line. The "using namespace std" directive tells the compiler that whenever
it finds a symbol in the program that is not defined in the program, it should search the
std namespace in case it is defined there. Names like cin and cout are called external
symbols in a program because their definitions are not contained in the program itself.

The inclusion of the header files <iostream> and <math.h> in the program allows the
compiler to determine whether the names cin, cout, and sqrt are being used properly,
thereby allowing it to compile the code, but it cannot create an executable module,
because the objects associated with the names cin and cout are not defined in your
program. Because the name cin is defined in a separate file, the compiler cannot create a
jump instruction to jump to the code that does stream extraction, i.e., "cin >>", because
there is no memory address associated with this code. Names like cin and cout that are
defined outside of the program module are said to be unresolved at compile time.

 1

Software Design Lecture Notes Prof. Stewart Weiss
About Separate Compilation Units

The most that the compiler can do is to create an entry in a table in the code that allows
the second stage to solve the problem. This table contains the location of every
instruction in the program that refers to a name whose location is unresolved, or external,
to the program. The second stage is linking, and it is performed by, not surprisingly, the
linker. The linker's job is to find the unresolved names listed in the table in the
executable module and to link them to the actual objects to which they refer. To link a
name means to replace it with the address to which it refers. Of course a name cannot be
associated with an address unless the object that it names actually has an address, which
implies that before the name can be resolved, the associated object must be incorporated
into the address space of the executable file. There is a special type of linking called
dynamic linking that is an exception to this rule, but how that works is a subject for a
different chapter. Static linking is the type of linking in which all code needed at runtime
is actually copied into the program

What is Separate Compilation?
Projects should be organized into collections of small files that can be compiled
individually. Typically, large classes are given their own files and smaller classes may be
grouped together into a single file. Sometimes collections of functions that are not
members of any class are placed into a separate file. As long as each of the files is
included in the project file, the compiler will usually compile each of them when it is
given the instruction to compile the project.

A large class named MyNode would be placed into two files named mynode.h and
mynode.cpp. The mynode.h file contains the class interface only. Files that end in a
".h" are called header files. They are usually not compiled by the compiler. Instead they
are included into the implementation files at compile time so that the compiler will have
access to the names defined in the header file. The mynode.cpp file contains the
implementation of the class. The implementation file contains the actual function
definitions. The files will usually have the following form.

 2

Software Design Lecture Notes Prof. Stewart Weiss
About Separate Compilation Units

mynode.h:

#ifndef MYNODE_H
#define MYNODE_H

class MyNode
{

// class interface here

};

#endif

mynode.cpp:

#include "mynode.h"

MyNode::MyNode(...)

// and all implementation code for MyNode member functions here

Usually the main program also needs to include the header file for the class, so that it can
make reference to class member functions and other parts of the public interface.
Therefore, the main program will contain a line of the form
#include "mynode.h"
among the other header files included by it. When the macro preprocessor sees the
#include directive, it finds the file that is to be included and copies it into the program at
the point at which the #include directive was found. Every included file is copied into the
main program.

Suppose that you also created some other class, say MyList, that depends upon MyNode,
perhaps because your MyList object uses MyNode objects. Then the MyList header file,
mylist.h, probably has the line
#include "mynode.h"
also, and the main program has the two lines
#include "mynode.h"
#include "mylist.h"
When the compiler runs, it copies the mynode.h file twice, one after the other, first
because of the first #include directive, then again because when it includes mylist.h, it
will copy mynode.h again because of the #include directive in that file. Now I can
explain why the following three funny lines must appear in your header files.

 3

Software Design Lecture Notes Prof. Stewart Weiss
About Separate Compilation Units

 4

#ifndef MYNODE_H
#define MYNODE_H

#endif
The first line translates to “if the macro symbol MYNODE_H is not defined then
continue reading until the matching occurrence of endif. If it does exist, then skip reading
code until immediately after that matching endif”. If there is no symbol already defined,
then the next line defines it, and the code is read. By defining the symbol here, the user
prevents the macro preprocessor from reading the code reference in the myheader.h file
twice.

You can use whatever symbol you want, but it must be unique in your project. It is best to
follow a convention that ensures this uniqueness. The most common is to use the symbol
consisting of the file name. in caps, with an underscore between the root and the
extension. Some people use a leading underscore also.

	About Compiling
	What is Separate Compilation?

